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1. Modal Analysis 
 
Let’s begin our discussion with a definition: modal analysis is [the] study of the dynamic 
properties of structures under vibrational excitation [1]. This may lead us to think of the 
dynamics of structures such as automobiles, 
aircraft, spacecraft, and other large complicated 
systems. A famous example of the importance 
of considering the dynamics of civil structures 
is the Tacoma Narrows bridge in Washington state that collapsed in 1940. It failed when the 
(steady) wind blowing over the bridge caused self-excited vibration, or flutter, in a twisting 
mode about its centerline; see Fig. 1.1.  
 
However, even the most common, everyday object has its own dynamic response. For 
example, sports equipment, including golf clubs and baseball bats, are subject to vibration 
due to the impulsive force applied during contact with the ball. Rotating equipment, such as 
fans and washing machines, can exhibit large vibrations when there is an imbalance in the 
rotating member. This represents forced vibration. Vibration of three bones within the middle 
ear play a critical role in transforming sound waves into what we perceive as “sound”. Here 
we have an example of free vibration. Regardless of the object’s size, shape, or function, we 
characterize the vibration behavior using a few special descriptors, including natural 
frequency, mode shape, and frequency response function. A primary objective of this lesson 

Modal analysis is [the] study of the 
dynamic properties of structures under 
vibrational excitation [1]. 

Figure 1.1: Photograph of the Tacoma Narrows 
bridge taken prior to its collapse [2]. 
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is to explore these concepts in detail. 
 
We may also consider modal analysis to be the experimental companion of finite element 
analysis (FEA). While FEA has become an essential tool to aid designers at the modeling 
stage, it is very often necessary to validate the 
results. In particular, experimental modal 
analysis results can be used to confirm 
decisions about boundary conditions, material 
properties, and mesh density. 
 
In this lesson, we will begin with a review of the fundamentals of single and two degree of 
freedom free and forced vibrations and, in doing so, we will establish notation conventions 
for a description of modal analysis. This will provide us with the basis we need to describe 
techniques for frequency response function measurement and model development. 
 
1.1 Single degree of freedom free vibration 
The vibration of bodies that possess both mass and elasticity, or the ability to deform without 
permanently changing shape, can be divided into three main categories: free, forced, and self-
excited vibrations. 
 

Important concepts in modal analysis 
are natural frequency, mode shape, 
and frequency response function. 

The three categories of  vibration are: 
free, forced, and self-excited. 
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Free vibration 
Free vibration occurs in the absence of a long term, external excitation force. It is the result 
of some initial conditions imposed on the system, such as a displacement from the system’s 
equilibrium position. Free vibration produces motion in one or more of the system’s natural 
frequencies and, because all physical structures exhibit some form of damping (or energy 
dissipation), it is seen as a decaying oscillation with a relatively short duration; see Fig. 1.1.1. 

Familiar examples include plucking a guitar string or striking a tuning fork. 
 
 
Forced vibration 
Forced vibration takes place when a continuous, external periodic excitation produces a 
response with the same frequency as the forcing function (after the decay of initial 
transients). While free vibration is often represented in the time domain, forced vibration is 
typically analyzed in the frequency domain. This emphasizes the magnitude and phase 
dependence on frequency and enables the convenient identification of natural frequencies. A 
typical source of forced vibration in mechanical systems is rotating imbalance. Large 

vibrations occur when the forcing frequency, , is near a system natural frequency, n, as 
shown in Fig. 1.1.2. This condition is referred to as resonance and is generally avoided. 
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Figure 1.1.1: Damped free vibration example. 
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Self-excited vibration 
In self-excited vibration, a steady input force is present, as in the case of forced vibration. 
However, this input is modulated into vibration at one of the system’s natural frequencies, as 
with free vibration. The physical mechanisms that provide this modulation are varied. 
Common examples of self-excited vibration include playing a violin, flutter in airplane wings 
(or bridges, as shown in Fig. 1.1), and chatter in machining. 
 
Let’s begin our discussion of single degree of freedom free vibration with a simple, lumped 
parameter model. In this model, all the mass is assumed to be concentrated at the coordinate 
location and the spring that provides the oscillating restoring force is massless. The model is 
composed of a mass, m, attached to a linear spring, k, that provides a force proportional to its 
displacement from the mass’s static equilibrium position. Because the rigid mass is only 
allowed to move vertically, a single time dependent coordinate, x, is sufficient to describe its 
motion. See Fig. 1.1.3, which includes the free body diagram. Summing the spring and 
inertial forces in the vertical direction yields the model’s equation of motion: 
 

0 kxxm  .      (1.1.1) 
 

Figure 1.1.2: Example of forced vibration 
magnitude. 
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By assuming a harmonic solution of the form stXex  , where X is a complex coefficient, 

is  , and  is the frequency (in rad/s), we can express the velocity as the first time 

derivative of the displacement, stst XeisXex  , and the acceleration as the second time 

derivative, stst XeXesx 22   (note that 1i  and 12 i ). Substitution into Eq. 
1.1.1 gives: 
 

  02  kmsXest .     (1.1.2) 

 

In this equation, either stXe  or  kms 2  is zero. If the first term is zero, this means that no 

motion has occurred and it is described as the trivial solution. We are interested in the case 
that the second term is equal to zero. This is referred to as the characteristic equation for the 
system: 
 

02  kms .      (1.1.3) 
 

Solving for the complex variable s gives the two roots 
m

k
i

m

k
s  . The vibrating 

frequency nm

k   is the natural frequency for the single degree of freedom system. 

Typical SI units for k and m are N/m and kg, respectively, which gives units of rad/s for n . 

m 

k 

x 

Figure 1.1.3: Single degree of freedom, 
undamped lumped parameter model (left); 
free body diagram (right). 

m 

x 

kx 

xm   



 
Vibration - Modal Analysis 

A SunCam online continuing education course 
 

www.SunCam.com  Copyright 2011 Tony L. Schmitz Page 7 of 55
 

Alternately, the natural frequency may be expressed in units of Hz (cycles/s). In this case, 

we’ll use the notation 


2

n
nf  . 

 
The total solution to Eq. 1.1.1 is the sum of the contributions from each of the two roots: 
 

titi nn eXeXx   21 .    (1.1.4) 

 

The complex coefficients, 1X  and 2X , can be determined from the initial displacement, 0x , 

and velocity, 0x , of the single degree of freedom system. Evaluating Eq. 1.1.4 at  0t  

gives: 
 

210 XXx  .      (1.1.5) 

 
The first time derivative of Eq. 1.1.4 is: 
 

ti
n

ti
n

nn eXieXix    21 .    (1.1.6) 

 
At 0t , Eq. 1.1.6 becomes: 
 

210 XiXix nn   .     (1.1.7) 

 
Equations 1.1.5 and 1.1.7 can be combined to determine the complex conjugate coefficients 

1X  and 2X : 

 

n

n xxi
X
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 and    (1.1.8) 

 

n

n xxi
X




2
00

2





.     (1.1.9) 

 
These coefficients can then be substituted in Eq. 1.1.4 to determine the time dependent 
displacement of the mass due to the imposed initial conditions. Alternately, the mass motion 
can be expressed in exponential form. To use this notation, we first need to identify the real 
(Re) and imaginary (Im) parts of the complex coefficients: 
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 
2

Re 0
1

x
X      

n

x
X

2
Im 0

1


    (1.1.10) 

 

 
2
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2

x
X     

n

x
X

2
Im 0

2


 .   (1.1.11) 

 
These real and imaginary parts can then be used to write the coefficients in exponential form: 
 

     
 


























































 








 



































nn

n

n

n

i

x

x
i

xx
X

x

x

i
xx

X

X

X
iXXAeX









0

01
2

2
0

22
0

1

0

0

1

2

0

2

0
1

1

112
1

2
11

tanexp
4

2

2
tanexp

22

Re

Im
tanexpImRe






  (1.1.12) 

 

where the magnitude is 
2

2
0

22
0

4 n

n xx
A


 

  and the phase is 







 

nx

x




0

01tan


. Similarly,  

iAeX 2  (same magnitude, but negative phase) because it is the complex conjugate of 

1X . We can then rewrite the total solution from Eq. 1.1.4 in the form: 

 
       tititiitii nnnn eeAeAeeAex .   (1.1.13) 

 

Finally, by applying the Euler identity   cos2 ii ee , Eq. 1.1.13 can be rewritten as: 

 

   tAx ncos2 .     (1.1.14) 

 
While Eq. 1.1.14 emphasizes the oscillatory nature of the mass motion and the dependence of 
the magnitude and phase on the initial conditions, we must also include damping in our 
analysis in order to model physical systems. Damping refers to the “leakage” of the input 
energy into the vibrating system. In other words, not all of the input energy serves to cause 
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motion. Some of it is dissipated in other ways. 
A comprehensive model of damping is 
complicated and not particularly well suited 
for incorporation into our simple mathematical 
description of single degree of freedom free vibration. Therefore, one or more of three 
mathematically simple, but effective, damping models are typically applied. 
 
Viscous damping 
A common assertion is that the retarding damping force is proportional to the mass velocity. 
You may have experienced this phenomenon if you’ve attempted to force a body through a 
fluid, such as pulling your hand through water or sticking your hand out the window of a 
moving vehicle. You probably observed that increasing the speed of your hand relative to the 
fluid raised the resistance proportionally. If we write the damping force as: 
 

xcf       (1.1.15) 

 

and substitute the velocity expression stst XeisXex  , we see that viscous damping is 
frequency dependent. When sketching models of lumped parameter systems, the damping 
element is often illustrated as a fluid dashpot (similar to a car’s shock absorber) when the 
viscous damping model is applied. Typical SI units for c are N-s/m. 
 
Coulomb damping 
Another effective damping model is Coulomb damping, or dry sliding friction. Here, energy 
is dissipated (as heat) due to relative motion between two contacting surfaces. The force 
magnitude depends on the sliding (kinetic) friction coefficient,  , and the normal force, N, 

between the two bodies. See Fig. 1.1.4. Because the friction force always opposes the 
direction of motion, the resulting equation of motion is nonlinear. A piecewise definition1 of 
the Coulomb damping force is [3]: 

                                                 
1 A piecewise definition is one with separate, non-overlapping, parts. 

Damping refers to the “leakage” of the 
input energy into the vibrating system. 
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.     (1.1.16) 

 

 
Solid damping 
Even in the absence of an external fluid medium or sliding friction against another surface, 
the motion of a freely oscillating body decays over time. This is due to energy dissipation 
internal to the body (perhaps a good mental picture is molecules sliding relative to each other 
within the body itself during periodic motion and elastic deformation). The energy 
dissipation during a cycle of motion for this solid or structural damping is taken to be 
proportional to the square of the vibration magnitude. Using the concept of equivalent 
viscous damping, solid damping is often incorporated with stiffness to arrive at a complex 
stiffness term in the differential equation of motion [4]. 
 
For the remainder of this lesson, we will use viscous damping to describe energy dissipation 
in the lumped parameter models. The equation of motion for free vibration of the single 
degree of freedom spring-mass-damper (Fig. 1.1.5) can then be written as: 
 

0 kxxcxm  .    (1.1.17) 
 

 

 

N 

x 

f 

Figure 1.1.4: Coulomb damping 
occurs due to dry sliding friction 
between the two surfaces. The normal 
and friction forces are shown. 
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Again assuming the harmonic solution stXex  , we obtain the characteristic equation: 
 

02  kcsms ,    (1.1.18) 
 
which can be rewritten as: 
 

02 
m

k
s

m

c
s .    (1.1.19) 

 
This equation is quadratic in s2 and has the two roots: 
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The vibratory behavior of the spring-mass-damper depends on the term under the radical in 

Eq. 1.1.20. If 0
2

2









m

k

m

c
, the system is underdamped and vibratory. If 0

2

2









m

k

m

c
, 

the system is said to be critically damped and, if 0
2

2









m

k

m

c
, then the system is 
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Figure 1.1.5: Single degree of freedom, 
damped lumped parameter model (left); 
free body diagram (right). 
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generally low in mechanical systems, we will consider only the underdamped option in our 
analyses. For underdamped systems, Eq. 1.1.20 can be rewritten as: 
 

dn is  2,1 ,     (1.1.21) 

 
where we’ve introduced the dimensionless 

damping ratio, 
km

c

2
 , and damped natural 

frequency, 21   nd . Under the viscous 

damping assumption, we see that the free 
vibrating frequency is reduced in the presence of damping. However, for typical mechanical 
systems, the damping is low enough that the frequency change is negligible. Using the two 
roots in Eq. 1.1.21, the total solution for the free motion of the single degree of freedom 
spring-mass-damper is: 
 

     titittiti ddndndn eXeXeeXeXx    2121 .  (1.1.22) 

 
Like the undamped case, the complex coefficients can be determined from the initial 

conditions. Taking the time derivative of Eq. 1.1.22, substituting the initial displacement, 0x , 

and velocity, 0x , and solving for 1X  and 2X  gives the complex conjugate pair: 
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.  (1.1.23) 

 
Using these coefficients, the exponential form can again be developed in a similar way to Eq. 

1.1.12 by substituting for the real and imaginary parts. For example,  
2

Re 0
1

x
X   and 

 
d

n xx
X




2
Im 00

1





 for the coefficient 1X . Note that these terms simplify to Eq. 1.1.10 

for the undamped case if   is set equal to zero. 

 
1.2 Single degree of freedom forced vibration 

Mechanical systems can be 
underdamped, critically damped, or 
overdamped. Most systems are 
underdamped, which means that they 
will oscillate during free vibration. 
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We will again consider the spring-mass-damper model shown in Fig. 1.1.5. However, a 

harmonic external force is now applied to the mass. The force is shown as tife   in Fig. 1.2.1. 

The corresponding equation of motion is: 
 

fkxxcxm   .     (1.2.1) 

 
Although the total solution to Eq. 1.2.1 includes both the homogeneous (transient) and 
particular (steady state) components, we have already described the damped transient 
response in the previous section. We will therefore consider only the steady state solution 
here. Because the motion response has the same frequency as the forcing function, we can 

assume a solution of the form tiXex  . The velocity and acceleration can then be written as 
tiXeix   and tiXex  2 . Substituting in Eq. 1.2.1 gives: 

 

  titi feXekcim   2 .    (1.2.2) 

 

 
Rewriting Eq. 1.2.2 gives the complex valued 
frequency response function (FRF). We will 
use this description of Eq. 1.2.3, rather than 
transfer function, because we can only consider 

m 

k 

x 

Figure 1.2.1: Single degree of 
freedom, lumped parameter 
model (damped with force). 

c 

tife 

The total solution to forced vibration 
includes both transient and steady state 
components. 
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positive frequencies and a single system configuration (damping and natural frequency) 
when we perform measurements. The term transfer function refers to the theoretical situation 

where all frequencies (   to  ) and n  combinations are included. 

 

kicmF
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There are two primary ways to represent the complex function shown in Eq. 1.2.3. The first 
is to separate the function into its magnitude and phase components and the second is to 
express the function using its real and imaginary parts. The frequency dependent magnitude 
and phase are written as: 
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Because Eqs. 1.2.4 and 1.2.5 are somewhat cumbersome, it is common to replace the 

frequency ratio 
n


 with another variable, such as r. We will also adopt this convention. The 

real and imaginary parts of the FRF are provided in Eqs. 1.2.6 and 1.2.7. 
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Example 1.2.1: FRF for single degree of freedom system 
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Let’s consider a single degree of freedom spring-mass-damper system with a mass of 1 kg, a 

spring constant of 6101  N/m, and a viscous damping coefficient of 200 N-s/m. In order to 
apply Eqs. 1.2.4-1.2.7, we must calculate the (undamped) natural frequency and damping 
ratio. 
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11012

200

2 6





km

c      

 
Figure 1.2.2 shows the magnitude and phase as a function of the frequency ratio, r. Although 
a logarithmic magnitude axis (i.e., a semilog plot) is often shown in the literature, we will use 
a linear convention for plots unless specified otherwise. The real and imaginary parts are 
provided in Fig. 1.2.3. Note that the zero frequency (DC) value for both the real part and 

magnitude is 6101
1 
k

 m/N. This represents the real valued static deflection of the spring 

(away from its equilibrium position) under a unit force. We can also see that the magnitude at 

resonance ( 1r  or n  ) is significantly larger than the DC deflection. This magnitude is 

6105
2

1 
k

 m/N. 
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The maximum value of the real part occurs at 21r , which we will approximate as  

Figure 1.2.2: Magnitude and phase for 
example single degree of freedom system. 

0 0.5 1 1.5 2
0

2

4

x 10
-6

M
a

g
n

itu
d

e
 (

m
/N

)

0 0.5 1 1.5 2

-150

-100

-50

0

r

P
h

a
se

 (
d

e
g

)

0 0.5 1 1.5 2

-2

0

2

x 10
-6

R
e

a
l (

m
/N

)

0 0.5 1 1.5 2

-4

-2

0
x 10

-6

r

Im
a

g
 (

m
/N

)

r = 0.9

r = 1.1

Figure 1.2.3: Real and imaginary parts for 
example single degree of freedom system. 
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9.01  r  (this approximation is valid for small   values when 2  is negligible). The 

minimum real part occurs at  21r , approximated as 1.11  r . The difference in 

the real value between these maximum and minimum points is the same as the magnitude 

peak value 6105
2

1 
k

 m/N. The imaginary minimum is seen at resonance with a value 

of 6105
2

1 

k

 m/N. 

 
In addition to the frequency dependent representations of the FRF shown in Figs. 1.2.2 and 
1.2.3, the Argand diagram can also be selected. In this case, the real part is graphed versus 
the imaginary part (i.e., the complex plane) and the same information identified in the 
previous paragraphs is compactly represented. As we traverse the “circle” clockwise from 

0r , where the real part is 6101
1 
k

 m/N and the imagnary part is zero, we sequentially 

encounter the 9.01  r  point where the real part is maximum, the 1r  point where 

the real part is zero and the imaginary part is most negative, the 1.11  r  point where 

the real part is most negative, and, finally, we approach the r  frequency ratio where 
both the real and imaginary parts are zero. 
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Figure 1.2.4: Argand diagram for example 
single degree of freedom system. 
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Using a vector representation for 
F

X
, the magnitude is identified as the length of the vector 

which extends from the origin to any point (i.e., a desired r value) on our “circle”. The phase 
lag between the displacement and force is the angle between the vector and the positive real 
axis. The real and imaginary parts are simply the projections of the vector on the real and 
imaginary axes. 
 

 
1.3 Two degree of freedom free vibration 
We will again use the lumped parameter spring-mass-damper model as the basis for our 
discussion, but we will now include a second degree of freedom by adding a second spring-
mass-damper to the first in a “chain-type” configuration; see Fig. 1.3.1. Using the free body 
diagrams for the top and bottom masses, where inertial forces are shown in addition to the 
spring and viscous damper forces, the two equations of motion can be written by equating the 
sum of the forces in the vertical direction to zero. The equation of motion for the top mass is: 
 

    0222212112111  xkxcxkkxccxm     (1.3.1) 

 
and the equation of motion for the bottom mass is: 
 

Figure 1.2.5: Vector representation of 
FRF in the complex plane. 
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02222121222  xkxcxkxcxm  .   (1.3.2) 

 
 
The difference we may observe between the 
single and two degree of freedom situations is 
that, for the two degree of freedom case, the 
equations of motion are coupled; they both 
contain the displacements x1 and x2 and velocities 

1x  and 2x . This complicates the system solution and provides the motivation for modal 

analysis, which enables us to uncouple these two equations through a coordinate 
transformation and then use our single degree of freedom solution techniques. Before 
describing this approach, however, let’s continue with our discussion of the chain-type two 
degree of freedom model. 
 

 
The equations of motion are compactly expressed using a matrix formulation: 
 

m1 

k1 

x1 

Figure 1.3.1: Two degree of freedom, damped 
lumped parameter model (left); free body diagram 
(right). 

c1 

m2 

k2 

x2 

c2 

m1 

x1 

 212 xxc     212 xxk   

11xm   

m2 

x2 

22 xm   

k1x1 11xc   

Modal analysis enables us to uncouple 
the equations of motion for multiple 
degree of freedom systems so that we 
can use our single degree of freedom 
solution techniques. 
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
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0
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221
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1
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221

2

1
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1
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x

kk

kkk

x

x

cc

ccc

x

x

m

m








. (1.3.3) 

 
The coupling is seen to occur in the symmetric damping and stiffness matrices for this chain-
type model due to the nonzero off-diagonal terms in the matrix positions (1,2) and (2,1). If 

we represent the mass and stiffness matrices as  M  and  K , neglect damping for now, and 

assume a harmonic solution of the form stXex  , we can write: 
 

       02  steXKsM .    (1.3.4) 

 

Similar to Eq. 1.1.2, there are two possibilities for the product in Eq. 1.3.4. If    0X , we 

obtain the trivial solution. We are therefore interested in the case when       02  KsM . 

From linear algebra [5], we know that for this matrix of equations to have a non-trivial 
solution, the determinant must be equal to zero. This represents the characteristic equation 
for our system. 
 

    02  KsM      (1.3.5) 

 
The determinant of a two row, two column (2x2) matrix can be calculated by finding the 
difference between the products of the on-diagonal (1,1 and 2,2) terms and the off-diagonal 
terms. This is expressed generically as: 
 

0
22

22





fesdcs

dcsbas
 or    (1.3.6) 

 

     0
2222  dcsfesbas .    (1.3.7) 

 

This equation is quadratic in s2, i.e., 024  mhsgs , and we can find the roots, 2
1s  and 

2
2s , using the quadratic equation. These two roots are the eigenvalues for the two degree of 

freedom system. The natural frequencies are calculated as: 
 

2
1

2
1 ns   and 2

2
2

2 ns  ,    (1.3.8) 
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where, by convention, 21 nn   . 

 

To find the eigenvectors, or mode shapes, we substitute 2
1s  and 2

2s  into the equation of 

motion for the top or bottom mass (either will give the same solution because we imposed 
linear dependence between the two equations when we set the determinant equal to zero in 
Eq. 1.3.5). The equation of motion for the top mass corresponds to the top row in Eq. 1.3.9; 
recall that we are ignoring damping for now. See Eq. 1.3.10. 
 





























0

0

2

1

2
2

22

221
2

1

X

X

ksmk

kkksm
   (1.3.9) 

 

  022121
2

1  XkXkksm     (1.3.10) 

 
Because the two mode shapes represent the 
relative magnitude and direction of vibration 
between the two coordinates in the two degree 
of freedom system, we want to calculate either 

the ratio 
2

1

X

X
 or 

1

2

X

X
. We can choose to 

normalize the eigenvector to either coordinate x1 or x2. In most situations, the coordinate of 
interest or location of force application is selected. For the chain-type model, if we wish to 

normalize to coordinate x1, we require the ratios 1
1

1 
X

X
 and 

1

2

X

X
. Using Eq. 1.3.10, we find 

that 
2

21
2

1

1

2

k

kksm

X

X 
  and the first mode shape is: 

 


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

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

2

21
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1

2

1

1

1

1

k

kksm

X

X
X

X

 .    (1.3.11) 

 

The second mode shape is determined by substitution of 2
2s  in place of 2

1s : 

 

Mode shapes represent the relative 
magnitude and direction of vibration 
between model coordinates. 



 
Vibration - Modal Analysis 

A SunCam online continuing education course 
 

www.SunCam.com  Copyright 2011 Tony L. Schmitz Page 22 of 55
 


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
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
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2
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1
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1

1

2

1

k
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X

X
X

X

 .    (1.3.12) 

 

The first mode shape corresponds to vibration in the first natural frequency 1n , while the 

second mode shape is associated with vibration at 2n . In general, the system will vibrate in 

a linear combination of both mode shapes/natural frequencies, depending on the initial 

conditions. If we’ve followed the convention of 21 nn    and normalized to the x1 

coordinate, we’ll find that the first mode shape will take the form 











0

1
1 a

 , where a is a 

real number, which indicates that the two 
masses are vibrating exactly in phase with one 
another (i.e., they reach their maximum and 
minimum displacements at the same instants in 
time). We’ll also see that the second mode 

shape will take the form 











0

1
2 a

 , which means that the mass motions are exactly out of 

phase with one another (i.e., when one mass reaches its maximum displacement, the other is 
at its minimum displacement). 
 
Example 1.3.1: Free vibration using complex coefficients 
In this example we will calculate the time response of the system in Fig. 1.3.1 when the mass 

values are 11 m  kg and 5.02 m  kg, the stiffness values are 7
1 101k  N/m and 

7
2 102k  N/m, the initial displacement of 1x  is 11,0 x  mm and the initial displacement of 

2x  is 12,0 x  mm, and the initial velocities are zero. The equations of motion in matrix 

form are: 
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


.    

 
The characteristic equation is: 
 

The first mode shape corresponds to 
vibration in the first natural frequency. 
The second mode shape oscillates at the 
second natural frequency and so on. 
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0
1025.0102

1021031
727

772





s

s
, or 0102105.35.0 14274  ss .   

 

This equation yields the two roots 62
1 10277.6 s  (rad/s)2 and 72

2 10372.6 s  (rad/s)2, 

which give the natural frequencies 25052
11  sn  rad/s and 79832

22  sn  

rad/s. Expressed in units of Hz, these natural frequencies are 8.398
2

1
1 


n

nf  Hz and 

1271
2

2
2 


n

nf  Hz. 

 
Let’s normalize the mode shapes to x2 and arbitrarily select the equation of motion for the top 

mass to calculate the ratio 
72

7

2

1

1031

102





sX

X
. We obtain the first mode shape, which 

corresponds to vibration in 1n , by substituting 2
1s  in this ratio: 
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1

X

X
X

X

 .     

 
See Fig. 1.3.2, where the relative deflection amplitudes between coordinates 1 and 2 are 

identified. The second mode shape, which corresponds to vibration in 2n , is: 
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 .    

 
See Fig. 1.3.3, where the deflections are now in opposite directions (out of phase). Similar to 
Eq. 1.1.4, we can generically write the time domain solution for the x1 and x2 vibrations as: 
 

titititi eXeXeXeXx 7983*
12

7983
12

2505*
11

2505
111

    and    
titititi eXeXeXeXx 7983*

22
7983

22
2505*

21
2505

212
  .    
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Figure 1.3.2: Mode shape 1 
normalized to coordinate 2. 
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Figure 1.3.3: Mode shape 2 
normalized to coordinate 2. 
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Here, ijX  and *
ijX  represent a complex conjugate pair, where the subscript i indicates the 

coordinate number and the subscript j denotes the natural frequency number. This solution 
suggests the general case that the total vibration is a linear combination of vibration in each 
of the two modes. The first time derivatives are: 
 

   titititi eXeXieXeXix 7983*
12

7983
12

2505*
11

2505
111 79832505    and   

   titititi eXeXieXeXix 7983*
22

7983
22

2505*
21

2505
212 79832505    .   

 
Substitution of the initial conditions leads to a system of four equations with eight unknowns. 
 

   
   *

2222
*

21212,0

*
1212

*
11111,0

*
2222

*
21212,0

*
1212

*
11111,0

798325050

798325050

1

1

XXiXXix

XXiXXix

XXXXx

XXXXx












     

 
However, we can apply the mode shape relationships to reduce this to a system of four 

equations with four unknowns. Using the same definitions for the ijX  subscripts, we can 

write 8431.0
21

11 
X

X
 and 5931.0

21

11 
X

X
. After substitution and rewriting in matrix form, we 

obtain: 
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1

7983798325052505

4734473421122112

1111

5931.05931.08431.08431.0

*
22

22

*
21

21

X

X

X

X

iiii

iiii
, or     bXA  .   

 

We can determine the coefficients by inverting  A  and premultiplying  b  by this result, 

     bAX 1 . The result is 


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. Using these values and the mode shape 
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relationships to obtain the remaining four coefficients, we can substitute in the original x1 and 
x2 expressions to determine the time dependent free vibration for our example system. 
 

titititi eeeex 7983798325052505
1 3805.03805.01194.01194.0       

titititi eeeex 7983798325052505
2 6417.06417.01417.01417.0       

 

Further, we can use the Euler identity   cos2 ii ee  to rewrite x1 and x2 as a sum of 

cosines. It is seen that the final motion of each mass is a linear combination of vibration in 
the two natural frequencies. 
 

   ttx 7983cos7610.02505cos2388.01       

   ttx 7983cos283.12505cos2834.02       

 
A potential problem with this approach is that, for additional degrees of freedom, the size of 
the matrix varies with the square of the number of coordinates. For example, we inverted a 
22x22, or 4x4, complex matrix for our two degree of freedom system. For a three degree of 
freedom model, it would be necessary to invert a 32x32, or 9x9, complex matrix, and so on. 
While computational capabilities continually increase, modal analysis offers an alternative to 
this approach. The fundamental idea behind 
modal analysis is that a coordinate 
transformation is applied to convert from the 
model, or local, coordinate system into a modal 
coordinate system. While these modal 
coordinates do not have physical significance, 
they lead to uncoupled equations of motion because the off-diagonal terms in the mass and 
stiffness matrices are zero. The coordinate transformation is a diagonalization process and 
relies upon the orthogonality of the eigenvectors. Let’s rework Example 1.3.1 to demonstrate 
the modal analysis approach. 
 
Example 1.3.2: Free vibration by modal analysis 
The first step in the modal analysis approach is typically to find the eigensolution (natural 
frequencies and mode shapes). However, we have already completed this step in the previous 

example. Our next task is to define the modal matrix,  P . It is a square matrix whose 

columns are composed of the mode shapes,     






 


11

5931.08431.0
21 P , where 

The fundamental idea behind modal 
analysis is that a transformation is 
applied to convert from a local into a 
modal coordinate system. The modal 
coordinates are then uncoupled. 
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we’ve continued with the decision to normalize to coordinate x2 for illustrative purposes. As 
noted, the orthogonality conditions for eigenvectors enable us to diagonalize (i.e., make the 
off-diagonal terms zero) the mass and stiffness matrices and, therefore, uncouple the two 
equations of motion. The new mass and stiffness matrices in modal coordinates (identified by 
the q subscripts) are determined by premultiplying the mass and stiffness matrices in local 
coordinates by the transpose of the modal matrix and postmultiplying this product by the 
modal matrix. 
 

       















 



















8518.00

0211.1

11

5931.08431.0

5.00

01

15931.0

18431.0
PMPM T

q  kg  

       






 























11

5931.08431.0

102102

102103

15931.0

18431.0
77

77

PKPK T
q    

  












7

6

104282.50

010601.7
qK  N/m     

 
The two equations of motion can now be written in modal coordinates q1 and q2 using the 

matrix formulation:        0 qKqM qq  . We see that the two equations are uncoupled and 

may be treated as separate single degree of freedom systems. 
 

010601.7211.1 1
6

1  qq       

0104282.58518.0 2
7

2  qq      

 
To use the solution techniques we developed in Section 1.1, we also need the initial 
conditions to be expressed in modal coordinates. Because the relationship between local and 

modal coordinates is     qPx  , we can write      xPq 1 . To invert our 2x2 modal 

matrix, we switch the on-diagonal terms, change the sign of the off-diagonal terms, and 

divide each term by the scalar determinant,        1,22,12,21,1 PPPPP  . 

 

    
























5870.06963.0

4130.06963.0

15931.018431.0

8431.01

5931.01

1P     
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We can then calculate the initial displacements      









 

283.1

2833.0
0

1
0 xPq  mm and 

velocities      








 

0

0
0

1
0 xPq   in modal coordinates. 

 

We introduce here another general form for the solution of undamped free vibration given the 
initial displacement and velocity (in addition to the information provided in Section 1.1). The 

resulting displacement can be written as    txt
x

x nn
n




cossin 0
0 


. Using this form, the 

modal displacements are    ttq 2505cos2833.02505sin01  , which represents motion in 

the first natural frequency, and    ttq 7983cos283.17983sin02  , which describes motion 

in the second natural frequency. To obtain the motion in local coordinates, we must perform 

the coordinate transformation     














 


2

1

11

5931.08431.0

q

q
qPx , which provides the 

relationships: 
 

211 5931.08431.0 qqx   and      

212 qqx  .       

 
It should be emphasized that the x2 vibration is determined simply by summing the modal 
displacements, q1 and q2. This is a direct outcome of normalizing our mode shapes to x2 and 
is an important result for us. We will take advantage of the fact that the local response can be 
written as a sum of the modal contributions when we perform our modal fitting of measured 
FRFs. Also, we see that the x1 motion is a linear combination of q1 and q2, where each modal 
response is scaled by the corresponding mode shape. Substitution of our q1 and q2 values into 
the previous equations for x1 and x2 yields the same result we obtained using the technique 
shown in Example 1.3.1, but the modal analysis approach did not require the inversion of the 
22x22 complex matrix. 
 

   ttx 7983cos7610.02505cos2388.01       

   ttx 7983cos283.12505cos2834.02       
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The final consideration in this section is 
solution of the two degree of freedom free 
vibration problem in the presence of damping. 
We’ve already stated that every physical system 
dissipates energy, so our analysis should 
incorporate the viscous damping matrix shown 
in Eq. 1.3.3. However, this complicates the eigensolution. At this point, we need to introduce 
the concept of proportional damping. Physically, proportional damping means that all the 
coordinates pass through their equilibrium (zero) positions at the same instant for each mode 
shape. For the low damping observed in the typical mechanical assemblies we will be 
considering, this assumption is realistic. For very high damping values, however, it is less 
reasonable because there may be significant phase differences between the motions of 
individual coordinates. Mathematically, proportional damping requires that the damping 
matrix can be written as a linear combination of the mass and stiffness matrices: 

     KMC    , where   and   are real numbers. 

 
Provided the proportional damping requirement is satisfied, then damping may be neglected 
in the eigensolution and the modal analysis procedure follows the steps provided in Example 
1.3.2. The only modifications are that we must calculate the modal damping matrix 

      PCPC T
q   and the general solution to the uncoupled modal equations of motion 

          0 qKqCqM qqq   is different. For the underdamped case, we can write 

   










  tqt

qq
eq dd

d

ntn 

 cossin 0

00 . Otherwise, the solution proceeds as before. 

 
1.4 Two degree of freedom forced vibration 
We will use the two degree of freedom lumped parameter spring-mass-damper model shown 
in Fig. 1.3.1, but will impose external harmonic forces at coordinates x1 and x2 for the general 
case. See Fig. 1.4.1. However, for linear systems we can apply the principle of superposition 
to consider the forces separately and then sum the individual contributions. For 

demonstration purposes, we will consider only the tief 
2  force applied to coordinate x2. The 

equations of motion in matrix form for this system are: 
 


































































22

1

22

221

2

1

22

221

2

1

2

1 0

0

0

fx

x

kk

kkk

x

x

cc

ccc

x

x

m

m








. (1.4.1) 

 

Proportional damping means that all 
the coordinates pass through their 
equilibrium positions at the same 
instant for each mode shape. For low 
damping, this assumption is valid. 
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By assuming solutions of the form tieXx 
2,12,1   and substituting in Eq. 1.4.1, we obtain: 

 

          titi eFeXKCiM   2 .   (1.4.2) 

 
We have two methods that we can use to determine the steady state forced vibration response 
for this system. The first is modal analysis, which requires proportional damping, and the 
second is complex matrix inversion, which places no restrictions on the nature of the system 
damping. Let’s begin with modal analysis. 
 
Modal analysis 
Our first step in the modal analysis approach is to write the system equations of motion in 
local coordinates as shown in Eq. 1.4.1; we continue to consider the f2 case in this discussion. 

m1 

k1 

x1 

Figure 1.4.1: Two degree of 
freedom, lumped parameter 
system (damped with force). 

c1 

m2 

k2 

x2 

c2 

tief 
1

tief 
2
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Provided proportional damping exists (i.e.,      KMC    is true), then we can ignore 

damping to find the eigensolution. Note that this solution is also independent of the external 
force(s). We find the eigenvalues (natural frequencies) and eigenvectors (modes shapes) 

using Eq. 1.3.4,        02  steXKsM . The eigenvalues are determined from the roots of 

Eq. 1.3.5,     02  KsM . The natural frequencies are computed from 22
njjs  , j = 1 to 

2 (the number of degrees of freedom). We can then use either of the equations of motion to 
find the 2x1 mode shapes for the two degree of freedom system: 
 

 













1

2
1

2

1

1

s
X

X
  and 

 













1

2
2

2

1

2

s
X

X
 ,   (1.4.3) 

 
where we have normalized to the location of the force application (coordinate x2). Using the 

mode shapes, we assemble the 2x2 modal matrix    21 P . We can then use the modal 

matrix to transform into modal coordinates (and uncouple the equations of motion). The 

diagonal modal mass, damping, and stiffness matrices are:        









2

1

0

0

q

qT
q m

m
PMPM , 

       









2

1

0

0

q

qT
q c

c
PCPC , and        










2

1

0

0

q

qT
q k

k
PKPK , respectively. We must 

also transform the local force vector into modal coordinates: 
 

     
 
  






























































2

2

22

1

22
2

2

1

2
1

2

1

2

1 0

1

10

1

1

f

f

fp

p

fs
X

X

s
X

X

FP
R

R
R T . (1.4.4) 

 
The modal equations of motion are: 
 

2222222

1111111

Rqkqcqm

Rqkqcqm

qqq

qqq








    (1.4.5) 

 
and the corresponding complex FRFs (steady state responses in the frequency domain) are: 
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   
    



















2
11

22
1

11
2

1

11

1

21

211

rr

rir

kR

Q

q

q

q 


 and 

   
    



















2
22

22
2

22
2

2

22

2

21

211

rr

rir

kR

Q

q

q

q 


, (1.4.6) 

 

where 
2,1

2,1
n

r



  and 
2,12,1

2,1
2,1

2 qq

q
q

mk

c
 . We transform into local coordinates using  

    


























2

121

2

1

11 Q

Qpp
QP

X

X
X  so that 22111 QpQpX   and 212 QQX  . 

Dividing each of these equations by F2 gives the cross and direct FRFs for the f2 force 
application, respectively. The cross FRF, which indicates that the force and measurement 
coordinates are not coincident, is: 
 

2

2
2

1

1
1

2

2
2

2

1
1

2

2211

2

1

R

Q
p

R

Q
p

F

Q
p

F

Q
p

F

QpQp

F

X



 ,  (1.4.7) 

 
where we see that the cross FRF is the sum of the modal FRFs scaled by the mode shapes 

(remember that 221 FRR   from Eq. 1.4.4). The direct FRF, which denotes that the 

measurement is performed at the force input location, is: 
 

2

2

1

1

2

2

2

1

2

21

2

2

R

Q

R

Q

F

Q

F

Q

F

QQ

F

X



 .   (1.4.8) 

 
We observe the important result that the direct FRF is simply the sum of the modal 
contributions. This is important for our subsequent analyses. Measurement of the frequency 
response functions on a physical system enable extraction of the model parameters and 
visualization of the natural frequencies and mode shapes. 
 
Example 1.4.1: Forced vibration by modal analysis 
Consider the chain-type, lumped parameter two degree of freedom system shown in Fig. 

1.4.1. For the upper spring-mass-damper, the local coordinate constants are: 5
1 104k  

N/m, 801 c  N-s/m, and 21 m  kg. For the lower spring-mass-damper, the local coordinate 

constants are: 5
2 106k  N/m, 1202 c  N-s/m, and 12 m  kg. A harmonic force 

tief 1002   N is applied to the lower mass (at coordinate x2); we will not consider any force 

applied to the upper mass, although this force could be considered separately and the result 
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added to the solution of the analysis we will perform here. The local mass, damping, and 

stiffness matrices are: 









10

02
M  kg, 













120120

120200
C  N-s/m, and 














55

56

106106

106101
K  N/m, respectively. To use modal analysis, we must verify that 

proportional damping exists. For 0  and 
5000

1
 , we see that the relationship 

     KMC    is satisfied. We can therefore determine the eigenvalues using: 

 

0
106106

1061012
525

562





s

s
.      

 

The two roots of the determinant are: 81.1227992
1 s  (rad/s)2 and 19.9772002

2 s  

(rad/s)2, which gives the natural frequencies 43.3501 n  rad/s and 53.9882 n  rad/s 

( 21 nn   ). To determine the roots, we first write the characteristic equation: 

     01061061012
255262  ss , or after simplifying 

0104.2102.22 11264  ss . Because this equation is quadratic in 2s , we can find the 

roots 2
1s  and 2

2s  using the quadratic equation. 

 
For the eigenvectors (mode shapes), we normalize to the location of the force application, 
coordinate x2. Using the equation of motion for the top mass (arbitrarily selected), we obtain 

the required ratio 
62

5

2

1

1012

106





sX

X
. Substitution of 81.1227992

1 s  (rad/s)2 and 

19.9772002
2 s  (rad/s)2 into Eq. 1.4.3 gives the two mode shapes 










1

7953.0
1  and 










1

6287.0
2 , respectively. We can now construct the modal matrix: 

 

    






 


11

6287.07953.0
21 P      

 
and transform the local mass, stiffness, and damping matrices into modal coordinates: 
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       









790.10

0265.2
PMPM T

q  kg,      

       












6

5

10750.10

010782.2
PKPK T

q  N/m , and    

       









9.3490

063.55
PCPC T

q  N-s/m.      

 
A simple check at this point is to recalculate the natural frequencies using the modal 
parameters. The results should match the eigenvalue solution. Here, we see that 

46.350
265.2

10782.2 5

1

1
1 




q

q
n m

k
  rad/s and 76.988

790.1

10750.1 6

2

2
2 




q

q
n m

k
  rad/s, 

where the differences are due to round-off error, but the results are essentially the same. We 
can also determine the modal damping ratios: 
 

 035.0
265.210782.22

63.55

2 5
11

1
1 




qq

q
q

mk

c
  (3.5% damping) and    

099.0
790.110750.12

9.349

2 6
22

2
2 




qq

q
q

mk

c
  (9.9% damping).    

 
To write our uncoupled equations of motion in modal coordinates, we also need the modal 
force vector, which we obtain by substitution into Eq. 1.4.4. 
 

 



























100

100

100

0

16287.0

17953.0
R  N     

10010750.19.349790.1

10010782.263.55265.2

2
6

22

1
5

11


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qqq

qqq




     

 
The FRFs for the single degree of freedom modal systems are: 
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where 
43.3501


r  and 

53.9882


r .  The direct and cross FRFs are then 

2

2

1

1

2
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Q
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F

X
  and 

2

2

1

1
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1 6287.07953.0
R

Q

R

Q

F

X
 , respectively. See Figs. 1.4.2 and 1.4.3. Because motion in the 

second mode shape, corresponding to 53.9882 n  rad/s, exhibits a 180 deg phase shift 

between the two coordinates (i.e., they are out of phase), the second mode is “inverted” in the 
cross FRF plot.  
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Figure 1.4.2: The real and imaginary parts of the direct 
FRF are determined from the sum of the modal 
contributions. 
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Complex matrix inversion 
Our final task of this section is to describe an alternative to modal analysis, referred to as 
complex matrix inversion. This approach does not require proportional damping, but does 
include the inversion of a 2x2 frequency dependent, complex matrix for the two degree of 

freedom system we are considering here. We’ll first write Eq. 1.4.2 in the form     FXA  , 

where         KCiM
aa

aa
A 






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  2

2221

1211 . The two degree of freedom system has 

four FRFs that we’d like to determine. First, we have the direct and cross FRFs, 
2

2

F

X
 and 

2

1

F

X
, due to the force application at coordinate 2x  that we previously determined using 

modal analysis. Second, we have the direct and cross FRFs, 
1

1

F

X
 and 

1

2

F

X
, due to the force 

application at coordinate 1x . We did not explicitly show the modal solution to this case, but 

the only differences are that we would normalize the mode shapes to 1x  and the FRFs would 
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Figure 1.4.3: The real and imaginary parts of the cross 
FRF are obtained by scaling the two modes by the 
corresponding mode shape and summing the results. 
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then be computed from 
2

2

1

1

1
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R

Q

R

Q
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  and 
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1
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Q
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


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

21

11

pp
P  

would be used to determine the modal mass, stiffness, and damping matrices. 
 

Rewriting     FXA   as      11   AFX  provides all four FRFs. They are ordered as:  
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, where we’ve used the bij notation to indicate the individual terms 

in the inverted  A  matrix. In our analysis,  A  is symmetric. Therefore, 2112 bb   and 

1

2

2

1

F

X

F

X
 . This condition is referred to as reciprocity. Physically, it means that we get the 

same result if we: 1) excite the system at 

coordinate 2x  and measure the response at 1x , 

as if we: 2) excite the system at coordinate 1x  

and measure the response at 2x . 

 

For the two degree of freedom system, we can directly write the individual terms in   1A  as: 
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For example, 
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1

aaaa

kcim
b

F

X
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




. Note that this complex expression is a 

function of the forcing frequency   so it must be evaluated over the desired frequency range 
in order to produce plots equivalent to those obtained for the modal analysis example. 
 
1.5 System identification 
The previous section describes the modal analysis steps required to obtain the direct and 
cross FRFs in local coordinates given a system model (we treated the chain-type, lumped 
parameter case, but other model geometries could be considered as well). This approach 
required that the mass, damping, and stiffness matrices be known. However, this is not the 

Reciprocity means that we get the same 
FRF if we: 1) excite at coordinate i and 
measure at coordinate j; or 2) if we excite 
at j and measure at i. 
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case for arbitrary structures. Our actual task is typically to measure the FRFs for the system 
of interest and then define a model by performing a modal fit to the measured data. 
 
Modal fitting 
Our fitting approach will be a “peak picking” method where we use the real and imaginary 
parts of the system FRFs to identify the modal parameters [6]. This approach works well 
provided the system modes are not closely spaced. However, even if two modeled modes are 
relatively close in frequency, we can still obtain a reasonable modal fit as we’ll see in 
Example 1.5.1. 
 
 
 
 

 
To demonstrate the fitting steps, consider the direct FRF shown in Fig. 1.5.1. This FRF 
clearly has two modes within the measurement bandwidth. To determine the modal 
parameters which populate the 2x2 modal matrices, we must identify three frequencies and 
one peak value for each mode. [Note that we have automatically assumed proportional 
damping in using this approach. Additionally, if there were three dominant modes we wished 
to model, we would obtain 3x3 modal matrices and so on.] The frequencies labeled 1 and 2 

Figure 1.5.1: Two degree of freedom direct FRF with 
the frequencies and amplitudes required for peak picking 
identified. 
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along the horizontal frequency axis in the imaginary part of the direct FRF (Fig. 1.5.1) 

correspond to the minimum imaginary peaks and provide the two natural frequencies, 1n  

and 2n , respectively. The difference between frequencies 4 and 3, labeled along the 

frequency axis of the real part of the direct FRF, is used to determine the modal damping 

ratio for the first mode, 1q : 

 

    11111134 211 nqqnqn    or 
1

34
1 2 n

q 





 .  (1.5.1) 

 

Similarly, the difference between frequencies 6 and 5 is used to determine 2q : 

 

2

56
2 2 n

q 





 .     (1.5.2) 

 
The (negative) peak value, A, identified along the vertical axis of the imaginary part of the 

direct FRF is next used to find the modal stiffness value, 1qk : 
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1 2

1
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 .     (1.5.3) 

 

Similarly, the peak value B is used to determine 2qk : 

 

B
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At this point, we can directly populate the modal stiffness matrix   

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q
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K . 

However, we must calculate the modal mass and damping values from the additional 
information we’ve obtained. We determine the modal masses using the natural frequencies 
and modal stiffness values: 
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The modal damping coefficients are computed using the modal damping ratios, stiffness 
values, and masses: 
 

11

1
1

2 qq

q
q

mk

c
  or 1111 2 qqqq mkc   and 2222 2 qqqq mkc  .  (1.5.6) 

 

We can now write the remaining modal matrices   

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
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q

q
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c
C . 

To complete this discussion, we will detail the steps necessary to define a chain-type, lumped 
parameter model based on measured FRFs. Before continuing with the model definition, let’s 
carry out an example of peak picking to determine the modal matrices. 
 
Example 1.5.1: Peak picking modal fit 
Figure 1.5.2 shows an example FRF that could be obtained from a tool point measurement. 
Our task is to perform a modal fit to identify the modal mass, damping, and stiffness 
matrices. The first step is to decide how many modes we wish to fit. A visual inspection of 
the FRF shows that a three mode fit is appropriate. The three natural frequencies are 
identified by locating the three minimum peaks of the imaginary part and recording the 
associated frequencies. These are identified as 499 Hz, 761 Hz, and 849 Hz in Fig. 1.5.3. We 
determine the modal damping ratios using the frequencies of the local maximum and 
minimum values of the real part according to Eq. 1.5.1. These are shown as 460 Hz and 533 
Hz for mode 1; 726 Hz and 787 Hz for mode 2; and 827 Hz and 873 Hz for mode 3. The 
modal damping ratios are then: 
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Figure 1.5.2: Example tool point FRF for peak 
picking exercise. 
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Figure 1.5.3: Three degree of freedom peak 
picking example with required frequencies and 
amplitudes identified. 
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The imaginary part negative peak values for each mode are also listed in Fig. 1.5.3. The 
modal stiffness values are calculated using Eq. 1.5.3. 
 

 
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71 1099.8
1062.7073.02
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

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

 qk  N/m    

 
We find the modal masses using Eq. 1.5.5. We must be sure to pay special attention to units 
for these calculations; note that we have switched from frequency units of Hz to rad/s by 

multiplying by 2 and the stiffness values are expressed in N/m. 
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3 
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
qm  kg       

 
Finally, the modal damping coefficients are determined using Eq. 1.5.6. Again, units 
compatibility should be ensured. In the following calculations, stiffness and mass values are 
expressed in N/m and kg, respectively, to obtain damping coefficient units of N-s/m. 
 

419914.01099.8073.02 6
1 qc  N-s/m    

4.75197.01051.4040.02 6
2 qc  N-s/m    

4.50175.01098.4027.02 6
3 qc  N-s/m    

 
The 3x3 modal matrices can now be written as: 
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The individual modal contributions may be described using Eq. 1.5.6: 
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where 
nj

jr



 , j = 1 to 3. The individual modes are plotted, together with the original FRF, 

in Fig. 1.5.4. As we’ve discussed, however, the direct FRF in local (physical) coordinates is 
the sum of the modal contributions so we may simply add the individual modal responses on 
a frequency by frequency basis to define our final fit. This result is shown in Fig. 1.5.5. 
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Figure 1.5.4: Example tool point and three modal 
coordinate FRFs determined by peak picking approach. 
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For this contrived example, the original modal parameters used to construct the “measured” 
FRF are known. Therefore, we can compare our modal approximation to the true values. 
These results are provided in Table 1.5.1. 
 
Table 1.5.1: True modal parameters and values obtained by peak picking modal fit. 

 Mode 1 Mode 2 Mode 3 
 True Fit True Fit True Fit 

fn (Hz) 500 499 760 761 850 849 

q 0.090 0.073 0.050 0.040 0.030 0.027 

kq (N/m) 61000.8   61099.8   61000.4   61051.4   61000.5   61098.4   

 
Model definition 
Once we have determined the modal matrices by peak picking, the next step in defining a 
model is to use the measured direct and cross FRFs to find the mode shapes and construct the 
modal matrix. We’ll again assume that the measured direct FRF, shown in Fig. 1.5.1, can be 
approximated with a two mode fit. This means that our model will have two degrees of 
freedom. As we’ve seen, for a two degree of freedom model, the mode shapes are 2x1 
vectors so that the square modal matrix has dimensions of 2x2. Because the mode shapes 
have just two entries (one of which is 1), we only require one cross FRF to determine the 
second entry. As before, we can choose the coordinate to which we normalize our mode 

shapes for the model shown in Fig. 1.4.1. Let’s define the coordinate of interest as 2x  so that 

the form of the modal matrix is   









11
21 pp

P . We determine 1p  and 2p  using: 1)  the 

peak imaginary part values denoted C, corresponding to the first mode with the natural 

frequency 1n , and D, the second mode with the natural frequency 2n , in the cross FRF2 

shown in Fig. 1.5.6, together with: 2) the A and B values identified in Fig. 1.5.1. 

                                                 
2 We observe that the cross FRF in Fig. 1.5.6 looks very different than the direct FRF in Fig. 1.5.1; the higher 
frequency mode is “upside down” in Fig. 1.5.6. As we saw in Section 1.4, this is because the two modes are out 
of phase for the cross FRF, which results in the sign change. 
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   (1.5.7) 

 
We have used the ratio of the peak of the cross FRF to the direct FRF in each mode to 
determine the mode shapes because, as we discussed previously, the cross FRF can be 
expressed as the sum of the modal contributions with each mode scaled by the corresponding 
system mode shape. See Eq. 1.4.7. Once we have defined the modal matrix, we can 
determine the model parameters in local coordinates using the transformations (from modal 

to local coordinates) in Eqs. 1.5.8-1.5.10. The forms of  M ,  C , and  K   correspond to the 

pre-selected two degree of freedom chain-type, lumped parameter model. 
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0 500 1000 1500

-2

0

2
x 10

-6

R
e

a
l (

m
/N

)

0 500 1000 1500

-4

-2

0
x 10

-6

Frequency (Hz)

Im
a

g
 (

m
/N

)

Figure 1.5.5: Example tool point FRF with three degree 
of freedom modal fit obtained by peak picking. 
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As a final note regarding model definition, it should be emphasized that if the measured 
direct FRF has three modes that we wish to model, then the square modal matrix will have 
dimensions of 3x3. To determine the modal matrix, we must measure, at minimum, two cross 
FRFs to give the two ratios required for the 3x1 mode shapes. Additional cross FRF 
measurements may be necessary to find measurement locations with good signal to noise 
ratio (i.e., away from system nodes, or locations of zero vibration amplitude regardless of the 
force input level). 
  
Modal truncation 
Prior to describing modal testing equipment, there is one remaining issue to highlight 
regarding modal fitting. Because FRF measurements always have a finite frequency range 
and elastic bodies possess an infinite number of degrees of freedom, there are necessarily 
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Figure 1.5.6: Two degree of freedom cross FRF with the 
amplitudes required for model development identified. 
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modes that exist outside the measurement range. We typically measure from zero to a few of 
kHz at most (perhaps up to 10 kHz for a small mass impact hammer with a steel tip – see 
Section 1.6). However, omitting these higher frequency modes during peak picking affects 
the accuracy of the modal fit, particularly the real part of the FRF. Equations 1.2.6 and 1.2.7, 
which describe the real and imaginary parts of a single degree of freedom FRF, are 
reproduced here to demonstrate the effect. 
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It is seen that when the frequency ratio 
n

r



  is large, or the driving frequency  is very 

high and outside the measurement range, the denominator within the right parenthetical terms 
in these two equations becomes very large and the response approaches zero. This is seen at 
the right hand side of Fig. 1.2.4, for example. However, as r approaches zero, the 
parenthetical term in the real part approaches one and the parenthetical term in the imaginary 

part approaches zero. Therefore, the value of the real part approaches 
k

1
 as r approaches 

zero3. If there are modes beyond the measurement bandwidth, neglecting these terms and the 

associated 
k

1
 contributions leads to errors in the vertical location of the modal fit’s real part. 

This is demonstrated in Ex. 1.5.2. 
 
Example 1.5.2: High frequency mode truncation during modal fitting 
A “measured” FRF is provided in Fig. 1.5.7. We will presume that the measurement 
bandwidth was 2 kHz, although a 5 kHz frequency range is shown for demonstration 
purposes. Within the 2 kHz range, two modes are visible and peak picking can be applied to 
determine the associated modal parameters. Using the values from the figure, the modal 
stiffness, mass, and damping matrix terms may be determined as shown in Ex. 1.5.1. 
 

                                                 
3 This 

k

1  term can be referred to as the DC compliance. 
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The fit to the measured direct FRF is determined by summing the two contributions in modal 
coordinates according to: 
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Figure 1.5.7: “Measured” direct FRF for Ex. 1.5.2. The 
peak picking values are listed within the 2 kHz 
measurement bandwidth. A 5 kHz frequency range is 
provided to show the truncated 4000 Hz mode. 
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where 
3751

f
r   and 

11002

f
r   and f is given in Hz. It is seen in Fig. 1.5.8 that, although the 

shape of the two modes within the 2 kHz bandwidth are correctly identified, there is a 
noticeable offset in the real part of the fit. It appears too stiff (i.e., it is located below the 
measured FRF) because the DC compliance due to the 4000 Hz mode has not been 
considered. Because this mode is outside the measurement frequency range, it is not possible 
to fit the mode and determine the appropriate modal parameters. However, given the visible 
offset in Fig. 1.5.8, the combined contributions of truncated modes can be included by adding 
an effective DC compliance term to the fit. Specifically, for this example, the fit could be 
rewritten as: 
 

2

2

1

11

R

Q

R

Q

kF

X
 ,      

  

where the 
j

j

R

Q
 terms (j = 1, 2) are obtained through peak picking as described previously and 

the 
k

1
 value is selected to move the fit to a vertical overlap with the measured FRF. If a value 

of 6103k  N/m is applied here, the fit is improved and the result shown in Fig. 1.5.9 is 
obtained. Note that this stiffness value is equal to the modal stiffness of the 4000 Hz mode 
shown in Fig. 1.5.7 (for completeness, the modal damping ratio for this mode is 0.07). 



 
Vibration - Modal Analysis 

A SunCam online continuing education course 
 

www.SunCam.com  Copyright 2011 Tony L. Schmitz Page 50 of 55
 

 
1.6 Modal testing equipment 
The basic hardware required to measure FRFs is: 
 a mechanism for known force input across the desired frequency range; 
 a transducer for vibration measurement, again with the required bandwidth; and 
 a dynamic signal analyzer to record the time domain force and vibration inputs and 

convert these into the desired FRF. 
 
The dynamic signal analyzer includes input channels for the time domain force and vibration 
signals and computes the Fourier transform of these signals to convert them to the frequency 
domain. It then calculates the ratio of the frequency domain vibration signal to the frequency 
domain force signal; this ratio is the FRF. The form of the FRF depends on the vibration 
transducer type and can be expressed as: 
 receptance/compliance – the ratio of displacement to force (considered in the 

previous sections); 
 mobility – the ratio of velocity to force; and 
 inertance/accelerance – the ratio of acceleration to force. 
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Figure 1.5.8: Result of modal fitting. An offset in the Re 
part of the fit (dotted line) is observed because the DC 
compliance of the 4000 Hz mode is not included. 
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Force input 
Common types of force excitation include: 
 fixed frequency sine wave – The complex response is determined one frequency at a 

time with averaging occurring at each frequency over a short time interval. This is 
referred to as a sine sweep test. 

 random signal – The frequency content of the random signal may be broadband 
(white noise) or truncated to a desired range (pink noise). Averaging over a fixed 
period of time is again applied. 

 impulse – A short duration impact is used to excite the structure. This approach 
enables a broad range of frequencies to be excited in a single, short test. Multiple tests 
are typically averaged in the frequency domain to improve coherence, or the 
correlation between the force and vibration signals. 

 
Common force input hardware includes: 
 shaker – These systems include a harmonically driven armature and a base. The 

armature may be actuated along its axis by a magnetic coil or hydraulic force. The 
magnetic coil, or electrodynamic, configurations can provide excitation frequencies 
of tens of kHz with force levels from tens to thousands of N (increased force typically 
means a lower frequency range). Hydraulic shakers offer high force with the potential 
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Figure 1.5.9: Result of modal fitting with the addition of 
a DC compliance term to correct for the truncated mode. 
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for a static preload, but relatively lower frequency ranges. In either case, the force is 
often applied to the structure of interest through a “stinger”, or a slender rod that 
supports axial tension and compression, but not bending or shear. A load cell is often 
incorporated in the setup to measure the input force. One consideration is that this 
load cell adds mass to the system under test, which can alter the FRF for low mass 
structures. Finally, the shaker must be isolated from the structure to prevent reaction 
forces due to the shaker motion from being transmitted through the shaker base to the 
structure. See Fig. 1.6.1. 

 
 
 

Figure 1.6.1: Shaker example. 
The stinger is shown extending 
from the top end [7]. 
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 impact hammer – An impact hammer incorporates a force transducer in a metal, 
plastic, or rubber tip to measure the force input during a hammer strike. Because the 
setup and measurement time is short, it is a popular choice for tool-holder testing 
(referred to as impact testing). Naturally, the energy input to the structure is a 
function of the hammer mass; therefore, many sizes are available. Also, the 
bandwidth of the force input depends on the mass and tip stiffness. Stiffer tips tend to 
excite a wider frequency range, but also spread the input energy over this wider 
range. Softer tips concentrate the energy over a lower frequency range. Hard, plastic 
tips are a common choice for tool testing because they do not damage the cutting 
edge and generally provide sufficient excitation bandwidth. See Fig. 1.6.2. 

Figure 1.6.2: Example impact hammer. Many sizes 
and tip types are available. A medium sized hammer 
(0.32 kg) is shown [8]. 
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Vibration measurement 
Vibration transducers are available in both non-contact and contact types. While non-contact 
transducers, such as capacitance probes and laser vibrometers, are preferred because they do 
not influence the system dynamics, contacting types, such as accelerometers, are more 
convenient to implement. As a compromise, low mass accelerometers are often used. See 
Fig. 1.6.3. In most applications, the addition of a few grams or less of accelerometer mass 
does not appreciably alter the response and the accelerometer can be attached using wax and 
then easily removed. Because accelerometers produce a signal which is proportional to 

acceleration, the inertance FRF is obtained. However, to convert from inertance, or 
F

A
, to 

receptance, 
F

X
, we can use the relationship: 

 

F

A

F

X


2

1


 ,     (1.6.1) 

 

which follows from the harmonic solution, tiXex  , and its second time derivative 

xXex ti 22    . Equation 1.6.1 effectively describes double numerical integration in 
the frequency domain. 
 

Figure 1.6.3: Example accelerometer 
with 10 mg mass and 0.5 Hz to 5 kHz 
measurement bandwidth. Many sizes are 
available for various applications [9]. 
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