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1.0 Introduction - 
The availability of inexpensive microprocessor-based embedded digital controllers has 
allowed the use of digital control techniques in modern systems. Digital controllers do 
not exhibit the drift and temperature dependence of their analog counterparts. 
 
“Modern Controls Theory” permits a direct design of a digital controller without first 
providing an analog controller counterpart. One such approach is the “deadbeat” 
controller, for which there is no analog equivalent. We use a deadbeat example to show 
that a relatively fast controller can be constructed for high-order systems without first 
designing an analog controller, nor resorting to complicated pole-placement in the unit-
circle “z” domain. 
 
2.0 A Third-Order System Example – 
We have chosen a third-order system H(f) = H1(f)* H2(f) with one real pole H1(f) and a 
complex-conjugate pole-pair H2(f). We choose the complex pole pair so that we face the 
control of an under damped system. 

  
 
Figure 2.0 –Example Third-Order System to be Controlled 
 
The first-order pole defining equation follows as: 
 

  




















1

1

1

1

f
f

j

fH  [2.0] 

 
The second-order pole defining equation follows as: 
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The real pole is chosen to be placed f1  = 1.6 Hertz and the complex pole-pair at f2  = 16 
Hertz, a decade higher in frequency. We have chosen the damping factor so that 
we emphasize the under damped component. 
 

  
 

Figure 2.1 – Bode Plot of Single Pole H1(f) Response 
 

  
 

Figure 2.2 – Bode Plot of Complex Pole-Pair H2(f) Response 
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Figure 2.3 – Bode Plot of Third-Order H(f) = H1(f)* H2(f) System Response 
 
 

3.0 A Third-Order System Block Diagram– 
We represent the third-order system in the following canonical form so that we can 
extract a polynomial representation of the transfer function H(s) that is equivalent to the 
H(f) we have constructed. 
 

  
 

Figure 3.0 – Canonical Third-Order System Block Diagram 
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We express our transfer functions in a rational polynomial form by restating each 
component in Laplace transform notation, using the scaled s operator. 
 
The first-order pole H1(s) defining equation follows as: 
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The second-order pole H2(s) defining equation follows as: 
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The third-order defining equation H(s) follows as: 
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Equation 3.4 is the defining equation that we must map onto the equivalent canonical 
third-order system block diagram. 
 
We write the summation equations, the integrator relationships, and we solve for the 
transfer function. Finally, we map the coefficients of powers of the s operator and the 
Block diagram is parameterized, as follows: 
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We substitute equations [3.7], [3.8], and [3.9] into equation [3.5] as follows: 
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From equation 3.13, we find: 
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Finally, we use equation [3.6] to generate:  
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From equation 3.8, we see that our third-order system has the parameters: 
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We set coefficients of the powers of s equal and solve, as follows: 
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F1 F2   
1.6 16 0.25 3.141593 0.01 

     

Coefficients    

     

a1 -0.603186    

a2 -1.061180    

a3 -0.101601    

b3 0.101601    
 
 
Table 3.0 –Third-Order System Block Diagram Parameters 
 

  
 
Figure 3.1 – Parameterized Third-Order System Block Diagram 
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4.0 Step and Impulse Responses of the Models– 
We simulate the analog system step responses of the components and compare results in 
the following:  
 

    
 
Figure 4.0 – First-Order System Impulse and Step Response 
 
Figure 4.0 illustrates the time-domain responses of equation [3.0] for the first-order 
component realization alone. 
 

    
 
Figure 4.1 – Second-Order System Impulse and Step Response 
 
Figure 4.1 illustrates the time-domain responses of equation [3.1] for the second-order 
component realization alone. 
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Figure 4.2 – Third-Order System Impulse and Step Response 
 
Figure 4.2 illustrates the time-domain responses of cascades with H1(s) followed by 
H2(s), and with H2(s) followed by H1(s), as well as the parameterized third-order block 
alone. At the scale of the presentation tool, the displays of all three are indistinguishable. 
 

    
 
Figure 4.3 – Third-Order Cascade Impulse and Step Response Differences 
 
Figure 4.3 illustrates the time-domain difference of the responses of cascades with H1(s) 
followed by H2(s), and with H2(s) followed by H1(s). The blocks were copied in each 
order from the single instance models and the differences noted are numerical errors of 
the simulation engine. 
 

    
 
Figure 4.4 – Third-Order Impulse and Step Response Differences 
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Figure 4.4 illustrates the time-domain difference of the responses of cascades with 
respect to the parameterized third-order block model. The differences noted are numerical 
errors of the parameter values mapped to available component values in the analog 
simulation engine. The maximum differential error of ~1% is difficult to distinguish with 
the Impulse responses superimposed, and the maximum differential error of ~0.1% is 
cannot be distinguished in the superimposed Step responses. 
 
With the parameterization above in Table 3.0, we have an accurate third-order analog 
model for comparison to later work. 
 
5.0 A Discrete-Time Model Using Shift-Operator Notation– 
For a system with a Zero-Order Hold (ZOH) at the input and output, such as encountered 
with the Analog to Digital and Digital to Analog converters at the interface between the 
analog model and the digital controller, we can employ the methodology from “Computer 
Controlled Systems,” as taught by the authors, Karl J. Astrom and Bjorn Wittenmark, and 
by Graham C. Goodwin and Kwai Sang Sin in “Adaptive Filtering, Prediction, and 
Control.” 
 
The methodology is based on the time-shift operator q, and on a “backward-difference” 
to represent differentiation. 
 

 
 

Figure 5.0 – Analog System H(f) enclosed in ZOH functions to form Digital H(q) 
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Figure 5.1 – ZOH Output Waveform Representation 
 
From the references, we represent the third-order system in multiple polynomial forms. 
We present a cascade of first-order system followed by a second-order system for a 
composite third-order system, a cascade of second-order system followed by a first-order 
system for a composite third-order system, and a polynomial third-order system. We 
show that they produce the same results, but are distinct in terms of the algebra of the 
input/output transfer function relationship. 
 
For the single pole, a relatively simple substitution follows: 
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We have defined the constant a11 to distinguish it from the a1 used later in the second-
order model that follows.  
 
For the second-order pole H2(s) with the defining equation as follows: 
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We refer to the shift-operator methodology’s second-order defining equations (presented 
here without proof) in the companion forms: 
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From our known model H(q) = H1(q)* H2(q) and we have the function as follows: 
 

  
11

11

1

1
1

1

)(

)(

aq

a

qX

qY
qH




  [5.13] 

 



  
 Digital Control of Second and Higher Order Systems 
 A SunCam online continuing education course 
 

 
www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page 14 of 41
 

     )(1)( 111111 qXaqYaq   [5.14] 
 
   )(1)()( 1111111 qXaqYaqqY   [5.15] 
 
Equation [5.15] is true for all instants and samples, so we can multiply both sides by q-1 
to obtain: 
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1
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Equation [5.16] indicates that each sample of the response of H1(q) is determined by a 
combination of one weighted previous sample of Y1(q) and X1(q). 
 
In a similar fashion, we develop the model for H2(q)  as follows: 
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Equation [5.19] is true for all instants and samples, so we can multiply both sides by q-2 
to obtain: 
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Equation [5.21] indicates that each sample of the response of H2(q) is determined by a 
combination of two weighted previous samples of Y2(q) and X2(q). 
 
 
6.0 Implementation Model Using Shift-Operator Notation– 
We choose to illustrate the Shift-Operator System as two cascaded models first. We will 
show that placement is unimportant and that H(q) = H1(q)* H2(q) = H2(q) * H1(q), but 
we cannot use either form for our “deadbeat” controller.. 
 

By placement of H1(q) first, its output samples are the input samples for H2(q), and 
therefore: 
    qXqY 21   [6.0] 
 
We make the substitution as follows: 
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             qXqaqYqaqbqbqYqaqaqY 1

1
111

1
11

2
2

1
12

2
2

1
12 1)(    [6.1] 

 
          qYqbqbaqYqaqaqY 1

3
2

2
111

2
2

1
1

   

     qXqbqba 3
2

2
1111    [6.2] 

 
We note that we still have an explicit reference in equation [6.2] involving the samples of 
the first-order system Y1(q), and no way to express that dependence in terms of the third-
order sequence Y(q). 
 
By placement of H2(q) first instead, its output samples are the input samples for H1(q), 
and therefore: 
    qXqY 12   [6.3] 
 
We make the substitution as follows: 
 
   )(1)()( 1

1
111

1
111 qXqaqYqaqY    [6.4] 

 
 )()( 1

1
111 qYqaqY   

            qXqbqbqaqYqaqaqa 2
2

2
1

1
1

112
2

2
1

1
1

11 11    [6.5] 
 
          qXqbqbaqYqaqaaqYqaqY 3

2
2

1112
3

2
2

111
1

11 11)()(    [6.6] 
 
We note that now we have an explicit reference in equation [6.6] involving the samples 
of the second-order system Y2(q), and no way to express that in dependence terms of the 
third-order sequence Y(q). 
 
The explicit reference to the sequence from a cascade member renders a Single-
Input/Single-Output (SISO) unavailable. To make a SISO model, we merge the first and 
second-order cascade to make a single third-order system description before we contrast 
the three representations.   
 

    
 

  
  21

2
11

21111

aqaqaq

bqba

qX

qY
qH




  [6.7] 

 

 
 
 

  
   21

2
1121

2
21111

aqaqaaqaqq

bqba

qX

qY




  [6.8] 
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 
 

  
   21

2
112

2
1

3
21111

aqaqaqaqaq

bqba

qX

qY




  [6.9] 

 

 
 
 

  
    2111112

2
111

3
21111

aaqaaaqaaq

bqba

qX

qY




  [6.10] 

 
            qXbqbaqYaaqaaaqaaq 21112111112

2
111

3 1   [6.11] 
 
              qXbqbaqYaaqaaaqaaqYq 21112111112

2
111

3 1   [6.12] 
 
We apply the shift operator q three times, in the form of q-3 to equation [6.12] to obtain 
the present value of Y(q) in terms of past values of Y(q) and X(q) as follows: 
 
         qYqaaqaaaqaaqY 3

211
2

1112
1

111
 

     qXqbqba 3
2

2
1111    [6.13] 

 
         qYqaaqaaaqaaqY 3

211
2

2111
1

111
 

     qXqbqba 3
2

2
1111    [6.14] 

 

Equation [6.14] shows us that we can find the response of the modeled system from the 
past three values of the response and two of the past three samples of the input, despite 
the rather complicated expression of the model’s coefficients. Equations [6.2] and [6.6] 
also show much the same and we will use simulation to illustrate that they provide the 
same response. However, equation [6.2] requires the Y1(q) sequence as an explicit 
variable, while equation [6.6] requires the Y2(q) sequence as an explicit variable. In 
equation [6.14] there are only SISO input and output sampled signals. 
 

We have selected a third-order example with a first order-pole and a complex second 
order pole because all systems can be decomposed into combinations of these two sets of 
components. Higher-order systems must be merged into a single-input/single-output 
(SISO) model such as in equation [6.14], though, for this deadbeat methodology to 
perform correctly. 
 

In Table 6.0 below, we evaluate each coefficient, and generate the step responses for the 
single-pole system Y1(n), the two-pole system Y2(n), the combined three-pole system 
Y(n) as well as the cascade of first and second-order poles in both directions 
Y1(n)=>Y2(n) and Y2(n)=>Y1(n).  
 

We illustrate the responses, as well as the evaluation of difference between the cascade 
implementations, and also the difference between the third-order system and the 
cascades. The data was calculated for the first 1000 samples (only the first 10 are shown 
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here). There is appreciable no difference to 10 digits of resolution between the two 
cascade models, but 1 unit in the 10th digit between the cascade and the third-order model 
that can be attributed to numerical error.  
 

The spreadsheet was used to check the accuracy of the coefficient calculations because it 
supports the high precision of calculation to make the accuracy comparison. 
 

F1 F2    TS    

1.6 16 0.2500 3.1416 0.0100 0.0001    
         

Shift Operator Model Coefficients     

0 100.5310        

 0.989997        

 97.3387        

 0.999953        

 0.009734        

First-Order Model Coefficient      

a11 0.998995        

Second-Order Model Coefficient     

a1 -1.979901        

a2 0.980095        

b1 0.007562        

b2 -0.007368        

     Ya(n) Yb(n) Ya(n)-Yb(n) Y(n)-Ya(n)

X(n) n Y(n) Y1(n) Y2(n) Y1(n)=>Y2(n) Y2(n)=>Y1(n) Difference Difference
0 0 0.000000 0.000000 0.000000     
0 1 0.000000 0.000000 0.000000     
1 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1 3 0.000000 0.001005 0.007562 0.000000 0.000000 0.000000 0.000000 
1 4 0.000008 0.002009 0.015165 0.000008 0.000008 0.000000 0.000000 
1 5 0.000023 0.003011 0.022808 0.000023 0.000023 0.000000 0.000000 
1 6 0.000046 0.004013 0.030488 0.000046 0.000046 0.000000 0.000000 
1 7 0.000076 0.005014 0.038204 0.000076 0.000076 0.000000 0.000000 
1 8 0.000115 0.006014 0.045952 0.000115 0.000115 0.000000 0.000000 
1 9 0.000161 0.007012 0.053731 0.000161 0.000161 0.000000 0.000000 
1 10 0.000215 0.008010 0.061538 0.000215 0.000215 0.000000 0.000000 

 
Table 6.0 – Model Summary 
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The spreadsheet comparison in Table 6.0 supports the comparison of digital models. In 
the illustrations below, we use another, less precise simulation tool to compare the analog 
third-order model to the digital model. The relative accuracy of the digital model will be 
used to support its use for making predictions that cannot be made in an analog system. 
 

        
 
Figure 6.0 – Third-Order Analog Model Impulse and Step Responses  
 

        
 
Figure 6.1 – Third-Order Digital Model Impulse and Step Responses  
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Figure 6.2 – Third-Order Model Impulse and Step Response Differences  
 

  
 
Figure 6.3 – Third-Order Model Expanded Step Response Differences  
 
Figure 6.0 illustrates the analog model behavior and figure 6.1 illustrates the equivalent 
digital system model for the third-order system. Figure 6.2 illustrates the instantaneous 
differences in the impulse and step responses. The impulse responses show a peak 
difference of less than 5% between analog and digital approaches and the peak difference 
in step responses is ~ 0.5% (an order of magnitude more precise. 
 
A closer examination of an expanded section of the step response difference explains that 
much of the difference is a “sawtooth” error caused by the digital system matching the 
analog closely at one point and the error expanding between the continuously varying 
analog model and the discrete steps of the digital model caused by the ZOH steps. 
 
7.0 Predictor Model Using Shift-Operator Notation– 
We have spent a great deal of effort developing a closely matched pair of models, one 
analog as the reference model and one digital that is intended to match the behavior of the 
analog model, at least in the time domain.  
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We now utilize the third-order digital model to construct a predictor of model behavior. 
We will use the digital predictor to produce an estimate of the future behavior of the 
analog model. We will then use the predictor to generate a control sequence to control 
future behavior of the analog model. We will be using the analog model as the H(f) 
function that is to be controlled. 
 
We return to the origins of the digital model in equation [6.12], reproduced here for 
reference: 
 
              qXbqbaqYaaqaaaqaaqYq 21112111112

2
111

3 1   [6.12] 
 
We reformulate equation [6.12] to make the time steps more apparent in the following: 
 
            qYaaqqYaaaqYqaaqYq 2112111

2
111

3   

        qXbaqqXba 211111 11   [7.0] 
 

Equation [7.0] clearly shows that to obtain the value of q3Y(q), we would need the values 
of q2Y(q), qY(q), Y(q), qX(q), and X(q), or at least an estimate of those values. The only 
values that we have from measurements are Y(q) and X(q) alone. For the development of 
the digital model, however, we applied the shift operator q to equation [6.12] to obtain 
the digital estimate of the present value of Y(q) from past and present values of Y(q) and 
X(q) alone. We have shown that the digital model is a very good representation of the 
analog system behavior and therefore an accurate model. 
 
We use equation [6.12] as reformulated in equation [7.0] to provide predictions of q2Y(q) 
and qY(q), knowing that we can get present and prior estimates of Y(q) from 
measurements of the analog system. 
 
Before we delve deeply into the algebra that follows, we define new parameters for 
equation [7.0] to help the manipulations as follows: 
 
        qYgqqYgqYqgqYq 21

2
0

3   

    qXkqqXk 21   [7.1] 
 
 1110 aag    [7.2] 

 
 21111 aaag    [7.3] 
 
 2112 aag    [7.4] 
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   1111 1 bak   [7.5] 
 
   2112 1 bak    [7.6]  
 
We apply the shift operator q once to equation [7.1] to obtain the digital estimate of 
q2Y(q) as follows: 
 
            qXqkqXkqYqgqYgqqYgqYq 1

21
1

210
2    [7.7] 

 
And we apply the shift operator q once to equation [7.1] to obtain the digital estimate of 
qY(q) as follows: 
  
            qXqkqXqkqYqgqYqgqYgqqY 2

2
1

1
2

2
1

10
   [7.8] 

 
Because all the samples we use in equation [7.8] for qY(q) prediction have already all 
occurred, we have all the information we require to make such a “one-step ahead” 
prediction. 
 
We revisit equation [7.7] for a model of “two-step-ahead” prediction and note that we 
require a value for qY(q) in the formulation. That value is available from equation [7.8] 
and can be substituted with the following result: 
 
             qXqkqXqkqYqgqYqgqYggqYq 2

2
1

1
2

2
1

100
2    

        qXqkqXkqYqgqYg 1
21

1
21

   [7.9] 
 
We regroup terms for clarity as follows: 
 
            qYqggqYqgggqYggqYq 2

20
1

2101
2
0

2    

        qXqkgqXqkkgqXk 2
20

1
2101

   [7.10] 
 

Because all the samples we use in equation [7.10] for q2Y(q) prediction have already all 
occurred, we have all the information we require to make such a “two-step ahead” 
prediction.  
 

We have explicit formulas for two future values of Y(q) for the third-order system in 
equations [7.8], and [7.10], respectively. 
 

To employ the predictor in a controller, we will need predictions further past the “two-
step ahead” prediction. For our example third-order system, we will require predictions 
for two more steps ahead but defer the development until they are needed. 
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 We could extend the prediction procedure as needed for higher-order systems. 
 
8.0 Control Objective Using the Predictor Model– 
We introduce a controller to our system as follows: 
 

 
 

Figure 8.0 – Digital Controller System 
 

We assume that the “Input” signal defines the objective for the system. “Outputs,” both in 
analog and digital form are shown but we are measuring in digital form and have that 
available in the form of Y*(q). The Block marked as “Sum” actually provides the 
difference between the present Y*(q) and the objective function “Input(q),” providing 

that difference as (q). 
 

The “Digital Controller” Block uses the information in the (q) sequence to provide the 
sequence X*(q) to the “Analog to Digital Converter” with the purpose of reducing the 

error to zero. We will formulate the error sequence (q) itself, and we will keep a history 
of the prior system excitations X*(q), and the prior system responses Y*(q), as well.  
 

In addition, we have analog model equations that we have developed for the sequences 
X(q) and Y(q), and will use those to represent the H(f) system itself in the spreadsheet 
form. We will illustrate also, a simulation of the digital controller operating to control the 
analog simulation, but that cannot easily be represented by a spreadsheet. 
 

Using equation [7.10], we can predict a value for the model output Y(q) two steps in the 
future in terms of prior measured Y*(q) outputs and two of the three prior measured  
X*(q) input pulse values, as well as present and future input values we choose to supply 
to H(f) through the Digital to analog Converter. 
 

Using the predictor approach, we estimate an error sequence and provide control inputs to 
reduce the future error and its derivatives to zero. For the third-order system, we set the 
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error and the first and second derivatives to zero. Higher order systems have more 
derivatives and a longer error sequence needs to be predicted. 
 

We can do little about the present and past error, but we can apply a future sequence of 
actual inputs to X*(q) so that the predicted output of the model q2Y(q) is precisely at the 

value to control (q) two steps in the future. This strategy is the basis of the “deadbeat” 
control methodology. 
 
9.0 Control Approach Using the Predictor Model– 
We are unable to change past values of the samples. Also, we know that the present value 
of Y*(q) was determined by the old values of Y*(q) and past values of X*(q) that we 
applied. From equation [6.14], we know that the best we can do is apply a sequence of 
X*(q) values but have no effect on Y*(q) until two samples in the future.  
 

We do, however, have suitable predictors for Y*(q) from our digital model that we can 
employ to estimate expected values for qY*(q) and q2Y*(q) that we can employ for 
control purposes.  
 

Our approach is to apply control inputs to the system in a sequence of control pulses that 
we define as a control sequence U(q) for purposes of calculation as a function of the error 

sequence (q). Once we calculate the desired sequence, we will provide that sequence as 
X*(q) to the Digital to Analog Converter for presentation to the H(f) analog system.  
 

            qXqkqXqkqYqgqYqgqYgqqYp
*2

2
*1

1
*2

2
*1

1
*

0
   [9.0] 

 

The use of Yp(q) defines the model prediction value to distinguish it from a measured 
value. The Y*(q) and X*(q) are used to indicate measured values from the system and 
U(q) will be used to describe the control sequence that we will compute. 
 

Because we have no better information, we will assume that the Input(q) remains 
constant indefinitely. We measure the present value of error as: 
 

  qYqInputq *)()(    [9.1] 
 
We predict the next-step value of error as: 
 

  qqYqInputqq p )()(   [9.2] 

 
We predict the second-step value of error as: 
 

  qYqqInputqq p
22 )()(    [9.3] 
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One control objective is to set the second-step value of error to zero and two of its 
derivatives also to zero at that time.  
 
     0)( 22  qYqqInputqq p  [9.4] 

 
   )(2 qInputqYq p   [9.5] 

 

We represent the first derivative of  as  at the second-step time by the first forward 
difference, and likewise define its value to be zero as follows: 
 

       0232  qqqqqq   [9.6] 
 

         0)()( 232  qYqqInputqYqqInputqq pp  [9.7] 
 

     032  qYqqYq pp  [9.8] 
 

    qYqqYq pp
23   [9.9] 

 
As equation [9.9] indicates, the values of the “two-step ahead” prediction and a new 
“three-step ahead” prediction are set equal to ensure that the energy within the model 
does not change the output. 
 

Similarly, we represent the second derivative  at the “two-step ahead” prediction time 
by the second forward difference using a new “four-step ahead” prediction and also 
define its value with constant Input(q) to be zero as follows: 
 
             0233422  qqqqqqqqqq   [9.10] 
 
           03243  qYqqYqqYqqYq pppp  [9.11] 

 
          qYqqYqqYqqYq pppp

3243   [9.12] 

 
From the prior result in equation [9.8], we know: 
 
           03243  qYqqYqqYqqYq pppp  [9.13] 

 
    qYqqYq pp

34   [9.14] 

 



  
 Digital Control of Second and Higher Order Systems 
 A SunCam online continuing education course 
 

 
www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page 25 of 41
 

As equation [9.14] indicates, the values of the “three-step ahead” prediction and a new 
“four -step ahead” prediction are set equal to ensure that the energy within the model 
does not change the output. 
 
Our objective then, is to set the error to zero at some time (two steps ahead), and have it 
remain zero for three steps (equal to the order of the system), to ensure that the system 
has come to equilibrium at the desired Y*(q) that is equal to the present Input(q) value. 
 
10.0 Control Sequence Using the Predictor Model– 
Using only past and present information, we have a prediction of the error sequence for 
three error values in the future. Our control objective is to set the final error to zero and 
two of its derivatives also to zero at that time. We designate that time to be represented 
by the error in the sequence at the “two-step ahead” time. To achieve the result, we set: 
 
            qYqggqYqgggqYggqInputqYq p

*2
20

*1
210

*
1

2
0

2 )(    

        qXqkgqXqkkgqXk *2
20

*1
210

*
1

   [10.0] 
 

To satisfy equation [10.0], we supply the present control input designated by X*(q)  = U0, 
a value we have not yet determined. Once we have determined a value for U0, we will 
supply it to the system as the present value for X*(q) in the input to H(f). We calculate U0 
and successive values before we take our next sample and apply three U values at each 
appropriate time instant in place of the X*(q) sequence, whereupon they become X*(q) 
values. 
 

We employ equation [10.0] to prepare a prediction for the next step to the “three-step 
ahead” time as follows: 
 

            qYqggqYgggqqYggqYq pp
*1

20
*

2101
2
0

3   

        qXqkgqXkkgqqXk *1
20

*
210

*
1

  [10.1] 
 

We note that the “three-step ahead” prediction refers to the present X*(q) value, that we 
have already decided will be U0, and in addition, a future qX*(q) input that we will 
designate as U1 to be computed in the following sections. We continue using the X*(q) 
notation to avoid confusion with the appropriate delays or prediction timing. Recall 
though that present and future values of X*(q) will be computed as control U and 
substituted at the appropriate sequence times. 
 
We employ equation [9.0], to prepare the value for the “one-step ahead prediction” 
required for substitution as follows: 
 

               qXqkqXqkqYqgqYqgqYgggqYq p
*2

2
*1

1
*2

2
*1

1
*

01
2
0

3    

      qYqggqYggg *1
20

*
210

  
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        qXqkgqXkkgqqXk *1
20

*
210

*
1

  [10.2] 
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We collect terms to provide an explicit prediction form as follows: 
 
              qYqgggqYqgggggqYggggqYq p

*2
21

2
0

*1
20

2
1

2
01

*
210

3
0

3 2    

              qXqkggqXqkgkgkgqXkkgqqXk *2
21

2
0

*1
111

2
020

*
210

*
1

   [10.3] 
 

We employ equation [9.3] to prepare a prediction for the next step to the “four-step 
ahead” time in preparation for substitution of equation [9.0] for the requisite “one-step 
ahead” prediction as follows: 
 

      qqYggggqYq p
*

210
3
0

4 2   

    qYggggg *
20

2
1

2
01   

    qYqggg *1
21

2
0

  
          qXkgkgkgqqXkkgqXqk *

111
2
020

*
210

*2
1   

    qXqkgg *1
21

2
0

   [10.4] 
 

With the substitution of equation [9.0] for the requisite “one-step ahead” prediction: 
 

              qXqkqXqkqYqgqYqgqYgggggqYq p
*2

2
*1

1
*2

2
*1

1
*

0210
3
0

4 2    

    qYggggg *
20

2
1

2
01   

    qYqggg *1
21

2
0

  
          qXkgkgkgqqXkkgqXqk *

111
2
020

*
210

*2
1   

    qXqkgg *1
21

2
0

   [10.5] 
 

We expand the “one-step ahead” prediction as follows: 
 

             qYqgggggqYqgggggqYgggggqYq p
*2

2210
3
0

*1
1210

3
0

*
0210

3
0

4 222    

         qXqkggggqXqkgggg *2
2210

3
0

*1
1210

3
0 22    

    qYggggg *
20

2
1

2
01   

    qYqggg *1
21

2
0

  
          qXkgkgkgqqXkkgqXqk *

111
2
020

*
210

*2
1   

    qXqkgg *1
21

2
0

   [10.6] 
 

We expand the result as follows: 
 

             qYqgggggqYqgggggqYgggggqYq p
*2

2210
3
0

*1
1210

3
0

*
0210

3
0

4 222    

         qXqkggggqXqkgggg *2
2210

3
0

*1
1210

3
0 22    

    qYggggg *
20

2
1

2
01   

    qYqggg *1
21

2
0

  
          qXkgkgkgqqXkkgqXqk *

111
2
020

*
210

*2
1   

    qXqkgg *1
21

2
0

   [10.7] 
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We collect similar terms as follows: 
 

       qYggggggggggqYq p
*

20
2
1

2
010210

3
0

4 2   

       qYqgggggggg *1
21

2
01210

3
0 2   

    qYqggggg *2
2210

3
0 2   

       qXqkggkgggg *1
21

2
01210

3
0 2   

    qXqkgggg *2
2210

3
0 2   

          qXkgkgkgqqXkkgqXqk *
111

2
020

*
210

*2
1    [10.8] 

 

Equations [10.0], [10.3], and [10.8] for the two-step, three-step, and four-step ahead 
predictions represent three simultaneous equations in three unknown U values, allowing 
for the explicit solution of those values. Each prediction is set to the value of the Input 
and solved simultaneously. 
 
We express the equations in somewhat different form to emphasize the role of the control 
sequence as follows: 
           qYqggqYqgggqYggqInput *2

20
*1

210
*

1
2
0)(    

        qXkqXqkgqXqkkg *
1

*2
20

*1
210    [10.9] 

 
               qYqgggqYqgggggqYggggqInput *2

21
2
0

*1
20

2
1

2
01

*
210

3
0 2    

              qXkkgqqXkqXqkggqXqkgkgkg *
210

*
1

*2
21

2
0

*1
111

2
020    [10.3] 

 
        qYggggggggggqInput *

20
2
1

2
010210

3
0 2   

       qYqgggggggg *1
21

2
01210

3
0 2   

    qYqggggg *2
2210

3
0 2   

       qXqkggkgggg *1
21

2
01210

3
0 2   

    qXqkgggg *2
2210

3
0 2   

          qXkgkgkgqqXkkgqXqk *
111

2
020

*
210

*2
1    [10.8] 

 

We are faced with solving the tree simultaneous equations, but the dependence of factors 
on the sequence of Y*(q) and X*(q) sequence values hides the simplicity of the problem 
somewhat.  From these three equations [10.9], [10.3], and [10.8], we define three 
variables C0(q), C1(q), and C2(q) as follows: 
 

          qYqggqYqgggqYggqC *2
20

*1
210

*
1

2
00 )(    

      qXqkgqXqkkg *2
20

*1
210

   [10.9] 
 

              qYqgggqYqgggggqYggggqC *2
21

2
0

*1
20

2
1

2
01

*
210

3
01 2    

        qXqkggqXqkgkgkg *2
21

2
0

*1
111

2
020

   [10.10] 
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       qYggggggggggqC *

20
2
1

2
010210

3
02 2   

       qYqgggggggg *1
21

2
01210

3
0 2   

    qYqggggg *2
2210

3
0 2   

       qXqkggkgggg *1
21

2
01210

3
0 2   

    qXqkgggg *2
2210

3
0 2    [10.11] 

 
Using equation [10.9], [10.10], and [10.11] definitions, we rewrite the simultaneous 
equations [10.9], [10.3], and [10.8] as follows: 
 
      qXkqCqInput *

10   [10.12] 

 
          qqXkqXkkgqCqInput *

1
*

2101   [10.13] 

 
              qXqkqqXkkgqXkgkgkgqCqInput *2

1
*

210
*

111
2
0202    [10.14] 

 
We substitute the pulse values U0, U1, and U2 as follows: 
 
     010 UkqCqInput   [10.15] 

 
       1102101 UkUkkgqCqInput   [10.16] 

 
         2112100111

2
0202 UkUkkgUkgkgkgqCqInput    [10.17] 

 
In Table 9.0 below, the same third-order digital model is illustrated with a step input and 
outputs calculated as Y(n). At each value of “n,” The coefficients C0(q), C1(q), and C2(q)  
are calculated. Each coefficient is used, to calculate the predictors q2Yp(q), q3Yp(q), and 
q4Yp(q). Each predictor value is used to provide the difference between the prediction 
value and the model value at the appropriate value of “n.” The Root-Sum-Square (RSS) 
of the predictor errors is provided in the RSS column. At each value of “n,” the RSS error 
is smaller than 1 part in 10 digits, and verifies that the calculations for the C0(q), C1(q), 
and C2(q) as well as q2Yp(q), q3Yp(q), and q4Yp(q) are correct. Only the first 10 of 1000 
rows are shown, but the results are consistent.
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F1 F2    TS TS    
1.6 16 0.2500 3.14E+00 1.00E-02 1.00E-04 1.00E-04    

Block Diagram Model Coefficients      
a1 -0.603186     g0 2.98E+00   
a2 -1.061180     g1 -2.99E+00   
a3 -0.101601     g2 9.94E-01   
b3 0.101601         

      k1 7.60E-06   

Shift Operator Model Coefficients  k2 -7.40E-06   

0 1.01E+02         

 9.90E-01         

 9.73E+01         

 1.00E+00         

 9.73E-03     a12 1.00E-03   

First-Order Model Coefficient       

a11 9.99E-01         

Second-Order Model Coefficient      

a1 -1.98E+00         

a2 9.80E-01         

b1 7.56E-03         

b2 -7.37E-03         
      RSS  Predictors   

Input n Y(n) C0 C1 C2 Pred error q2Yp(n) q3Yp(n) q4Yp(n)
0 0 0.0000E+00        
0 1 0.0000E+00        
1 2 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1.40E-20 7.60E-06 2.28E-05 4.57E-05
1 3 0.0000E+00 1.52E-05 2.29E-05 3.06E-05 3.05E-20 2.28E-05 4.57E-05 7.63E-05
1 4 7.5979E-06 3.81E-05 5.35E-05 6.89E-05 6.21E-20 4.57E-05 7.63E-05 1.15E-04
1 5 2.2828E-05 6.87E-05 9.18E-05 1.15E-04 3.03E-20 7.63E-05 1.15E-04 1.61E-04
1 6 4.5723E-05 1.07E-04 1.38E-04 1.69E-04 4.07E-20 1.15E-04 1.61E-04 2.15E-04
1 7 7.6311E-05 1.53E-04 1.92E-04 2.30E-04 2.94E-19 1.61E-04 2.15E-04 2.76E-04
1 8 1.1462E-04 2.07E-04 2.53E-04 3.00E-04 4.07E-19 2.15E-04 2.76E-04 3.46E-04
1 9 1.6068E-04 2.69E-04 3.23E-04 3.77E-04 9.42E-19 2.76E-04 3.46E-04 4.23E-04
1 10 2.1451E-04 3.38E-04 4.00E-04 4.62E-04 1.77E-18 3.46E-04 4.23E-04 5.08E-04

 
Table 10.0 Predictor Validation Calculations
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11.0 Control Sequence Calculation Using the Predictor Model– 
We solve the simultaneous equations [10.9], [10.10], and [10.11] for the control sequence 
by inspection as follows: 
 

     
1

0
0 k

qCqInput
U


  [11.0] 

 

       
1

02101
1 k

UkkgqCqInput
U


  [11.1] 

 

         
1

12100111
2
0202

1 k

UkkgUkgkgkgqCqInput
U


  [11.2] 

 
 
In n C0 C1 C2 U0 U1 U2 X* (n) Y* (n) 
          
0 0       0  
0 1       0  

1 2       0 0.00E+00
1 3       0 0.00E+00
1 4 3.81E-05 5.35E-05 6.89E-05 1.32E+05 -1.32E+05 4.35E+01 1.32E+05 0.00E+00
1 5       -1.32E+05 0.00E+00
1 6       4.35E+01 1.00E+00
1 7       0 1.00E+00
1 8       0 1.00E+00

 
Table 11.0 Control Validation Calculations 
 
We use the values obtained from [11.0], [11.1], and [11.2] and produce the listing shown 
in Table 11.0, but we have not shown the previous Y(n) that was referenced to produce 
the C0(q), C1(q), and C2(q). The Y(n) was used to obtain the values so that we can employ 
them for control of another model that we list as X*(n) and Y*(n) to show the effect of 
applying the U0(q), U1(q), and U2(q) sequence to that similar system. The original Y(n) 
system response is shown in Table 9.0 and it results from a unit-step input at the n = 2 
time. At the n = 4 instant, we utilize the calculated values of the U0(q), U1(q), and U2(q) 
sequence to apply them to the Y*(n) system as X*(n) inputs. Both the Y*(n) and X*(n) 
sequences have been quiescent prior to the n = 4 instant. Y*(n) shows no response for the 
n = 4, and 5 instants, but for the n = 6 instant, Y*(n) has attained the value of unity.  
 
We have shown that the U0(q), U1(q), and U2(q) sequence is effective in providing the 
requisite control signal to provide a fast step response. The system is running “open-
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loop” following the n = 6 instant, but the natural response to a X*(n)   = 0 control 
sequence keeps the Y*(n) sequence close to the desired Y*(n)  = 1 value. 
 
 

12.0 Control Sequence Stability – 
On examination of equations [9.0], [9.1], and [9.2] we see that the U0(q), U1(q), and 
U2(q) sequence is determined by measured values of Y*(q) and past values of the X*(q) 
sequence and the Input(q) signals, as expected, so long as we do not eliminate the 
dependence on the X*(q) values..  
 

Another way to look at this equation set is as a system specification for the controller 
itself, with the sequence of values of U being the controller output. We have a sequence 
of three values of U specified by changing of the C(q)coefficients to provide the sequence 
U(q), qU(q), and q2U(q) that we seek for control. Because values of U appear at the 
controller’s output, they are also the X*(q) sequence. 
 

It is possible to utilize the equation for q2U(q) and substitute the predicted values for 
U(q), qU(q) as we know they will appear at the X*(q) sequence controller output, and 
examine the resulting equation for root locations, however, it is not uncommon that the 
controller itself is unstable.  
 

In n C0 C1 C2 U0 U1 U2 
Yinput(n) Yanalog(n) 

0 0       0.0000E+00 0.00E+00
0 1       0.0000E+00 0.00E+00
1 2       0.0000E+00 0.00E+00
1 3       0.0000E+00 0.00E+00
1 4 0.00E+00 0.00E+00 0.00E+00 1.59E+05 -4.71E+05 6.21E+05 1.5923E+05 0.00E+00
1 5       -4.7122E+05 0.00E+00
1 6       6.2180E+05 1.00E+00
1 7 4.87E+00 1.24E+01 2.37E+01 -6.16E+05 6.11E+05 -6.06E+05 -6.1661E+05 1.00E+00
1 8       6.1146E+05 1.00E+00
1 9       -6.0636E+05 1.00E+00
1 10 -2.77E+00 -1.02E+01 -2.11E+01 6.01E+05 -5.96E+05 5.91E+05 6.0130E+05 1.00E+00
1 11       -5.9628E+05 1.00E+00
1 12       5.9131E+05 1.00E+00
1 13 4.68E+00 1.19E+01 2.26E+01 -5.86E+05 5.81E+05 -5.76E+05 -5.8638E+05 1.00E+00
1 14       5.8149E+05 1.00E+00
1 15       -5.7663E+05 1.00E+00
1 16 -2.59E+00 -9.65E+00 -2.00E+01 5.71E+05 -5.67E+05 5.62E+05 5.7182E+05 1.00E+00
1 17       -5.6705E+05 1.00E+00
1 18       5.6232E+05 1.00E+00

 

Table 12.0 Control Application 
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13.0 Control Sequence Application to the Analog System – 
The controller calculations shown in Table 12.0 above are applied to the analog system 
with the result shown in Figure 13.0, below: 
 

      
 
Figure 13.0 Control Application to Analog model 
 

One issue with the simple “deadbeat” control methodology is the discrete-time nature of 
the control itself. We see that the “Analog System” performs as claimed and the error is 
zero at the designated sampling instants. Unfortunately, between the sample instants, the 
system shows a damped sinusoidal response at the Nyquist rate. Because the Analog 
System itself is stable, eventually, the sinusoid decays to zero on the step waveform.  
 

14.0 Control Sequence Effort – 
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Figure 14.0 Control Applied to Analog model input 
 
The amount of the control signal required to force the system to respond rapidly is also 
quite high in this example. The situation is similar to forcing a “dump truck” to perform 
like a “sports car.” It can be done, but the amount of effort is quite high as shown in 
Figure 14.0 above. 
 

To achieve the rapid system response, the control signal is quite large. For a single unit 
step response, with a 500 sec sampling clock, we require control signals of the order of 
600,000 units at the input. For some systems this may not present a problem, but for other 
systems it is a prohibitive cost. 
 

We have utilized a very short sample time to represent our system accurately, but we are 
not constrained in the same way as we approach the control effort. We can extend the 
period of the control signal and decrease the control effort required to bring the system to 
the desired output state. 
  

15.0 Control Sequence Application to the Analog System at 1/10 the Sample Rate– 
The controller calculations shown in Table 15.0 below, obtained by changing the 
sampling clock to a 5 msec period are applied to the analog system 
 

In n C0 C1 C2 U0 U1 U2 
Yinput(n) Yanalog(n) 

          
0 0       0.0000E+00 0.00E+00
0 1       0.0000E+00 0.00E+00
1 2       0.0000E+00 0.00E+00
1 3       0.0000E+00 0.00E+00
1 4 0.00E+00 0.00E+00 0.00E+00 1.78E+02 -4.34E+02 5.33E+02 1.7895E+02 0.00E+00
1 5       -4.3467E+02 0.00E+00
1 6       5.3374E+02 1.00E+00
1 7 3.73E+00 7.84E+00 1.19E+01 -4.88E+02 4.50E+02 -4.12E+02 -4.8860E+02 1.00E+00
1 8       4.5095E+02 1.00E+00
1 9       -4.1251E+02 1.00E+00
1 10 -1.12E+00 -4.35E+00 -7.63E+00 3.81E+02 -3.48E+02 3.21E+02 3.8103E+02 1.00E+00
1 11       -3.4825E+02 1.00E+00
1 12       3.2197E+02 1.00E+00
1 13 2.64E+00 5.11E+00 7.59E+00 -2.93E+02 2.72E+02 -2.48E+02 -2.9398E+02 1.00E+00
1 14       2.7209E+02 1.00E+00
1 15       -2.4814E+02 1.00E+00
1 16 -2.85E-01 -2.23E+00 -4.22E+00 2.29E+02 -2.09E+02 1.94E+02 2.2996E+02 1.00E+00
1 17       -2.0942E+02 1.00E+00
1 18       1.9438E+02 1.00E+00
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Table 15.0 Control Application 
 
Slowing the system sampling time by ten times has not prevented the control algorithm 
from achieving the “deadbeat” response 
 
 

          . 
 
Figure 15.0 Control Application to Analog model 
 
Again, we see the simple “deadbeat” control methodology has achieved the zero error 
conditions at the sampling instants. Again, between the sample instants, the system shows 
a damped sinusoidal response at the Nyquist rate. At the slower rate, the damping is 
greater, and the sinusoid decays more quickly. 
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Figure 15.1 Control Applied to Analog model input 
 
The longer sample time still represents our system accurately, but we have greatly 
reduced the control effort. The extended period of the control signal has decreased the 
control effort required to bring the system to the desired output state. The peak control 
effort for the single unit step response, with a 5 msec sampling clock, now requires 
control signals of the order of 500 units at the input. 
 

16.0 Control Sequence Application at 1/4 the Prior Sample Rate– 
The controller calculations shown in Table 16.0 below, obtained by changing the 
sampling clock to a 20 msec period are applied to the analog system 
 

In n C0 C1 C2 U0 U1 U2 
Yinput(n) Yanalog(n) 

          
0 0       0.0000E+00 0.00E+00
0 1       0.0000E+00 0.00E+00
1 2       0.0000E+00 0.00E+00
1 3       0.0000E+00 0.00E+00
1 4 0.00E+00 0.00E+00 0.00E+00 5.09E+00 -2.79E-01 3.39E+00 5.0986E+00 0.00E+00
1 5       -2.7854E-01 0.00E+00
1 6       3.3966E+00 1.00E+00
1 7 1.12E+00 7.16E-01 5.64E-01 -6.32E-01 2.11E+00 2.43E-01 -6.3209E-01 1.00E+00
1 8       2.1115E+00 1.00E+00
1 9       2.4309E-01 1.00E+00
1 10 7.02E-01 5.59E-01 5.06E-01 1.51E+00 6.48E-01 1.23E+00 1.5155E+00 1.00E+00
1 11       6.4897E-01 1.00E+00
1 12       1.2390E+00 1.00E+00
1 13 8.35E-01 6.08E-01 5.24E-01 8.37E-01 1.11E+00 9.24E-01 8.3721E-01 1.00E+00
1 14       1.1109E+00 1.00E+00
1 15       9.2450E-01 1.00E+00
1 16 7.93E-01 5.93E-01 5.18E-01 1.05E+00 9.64E-01 1.02E+00 1.0514E+00 1.00E+00
1 17       9.6499E-01 1.00E+00
1 18       1.0238E+00 1.00E+00

 
Table 16.0 Control Application 
 

Slowing the system sampling time by four more times has not prevented the control 
algorithm from achieving the “deadbeat” response 
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Figure 16.0 Control Application to Analog model 
 
Again, we see the simple “deadbeat” control methodology has achieved the zero error 
conditions at the sampling instants. Again, between the sample instants, the system shows 
a damped sinusoidal response at the Nyquist rate. At the slower rate, the damping is 
greater, and the sinusoid decays more quickly. 
 

          
 
Figure 16.1 Control Applied to Analog model input 
 
The longer sample time still represents our system accurately, but we have greatly 
reduced the control effort. The extended period of the control signal has decreased the 
control effort required to bring the system to the desired output state. The peak control 
effort for the single unit step response, with a 5 msec sampling clock, now requires 
control signals of less than 5 units at the input. 
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In Figure 16.0, we also see that the damping of the response is further improved. 
In contrast, the system has settled near the unit level in 200 msec, whereas the original 
third-order system had not yet reached 70% of that level in the same time and required 
nearly a full second to settle to a unit level. 
 
17.0 Control Sequence Application at 20 msec and 50 msec clocking– 
The controller was implemented using an analog circuit simulator and discrete-time ZOH 
analog signal representations to produce the control of the following analog models. The 
results are similar to the results above and differences are attributable to the less accurate 
coefficient representations. Other simulations using the analog circuit simulator and 
discrete-time ZOH analog signal representations exhibited a general lack of control that is 
expected due to the extreme coefficient sensitivity of the deadbeat methodology. The 
deadbeat methodology requires the accuracy of the digital computation both in 
magnitudes and timing for control at the higher sampling rates. 
 

Figures 17.0 and 17.1 illustrate both the digital model and analog model responses with 
the loop closed around the analog model, with a sampling clock with 20 millisecond 
period.  
 
 

  
 
 Figure 17.0 Control Applied to Analog model input and Model Response 
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 Figure 17.1 Control Signal Applied to Analog model input 
 
Figures 17.2 and 17.3 illustrate both the digital model and analog model responses with 
the loop closed around the analog model, with a sampling clock with 50 millisecond 
period. 
 

 

  
 

 Figure 17.2 Control Applied to Analog model input and Model Response 
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 Figure 17.3 Control Signal Applied to Analog model input 
 
18.0 Summary and Conclusions– 
A controller was implemented using the deadbeat methodology. All equations were 
developed in the time domain using the SISO system model for the analog components. 
A third-order analog system was chosen to illustrate the high-order behaviors with one 
real pole and a complex-conjugate, underdamped pole pair with the understanding that 
higher-order systems can be identified as being composed of these components. 
 
Both analog and digital system models were developed and the need for the Single-
Input/Single-Output (SISO) form was developed. Good agreement was obtained from 
comparisons of each odel representation. 
 
The time-shift “q” operator was introduced to develop a “rational” form for the SISO 
analog and digital models. The results were developed and compared to show good 
agreement between the models. 
 
The time-shift “q” operator was used to develop a predictor for various “step-ahead” 
forms of the rational SISO model. 
 
An error predictor was constructed to produce a prediction of tracking error. 
 
Difference equations were written to represent first and second-order time derivatives of 
the predicted error behavior of the SISO digital model. 
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Simultaneous equations were solved to determine the sequence of control signals 
required to bring error and its time-derivatives to zero. 
 
The sequence of control signals was applied to the digital model, and in parallel to the 
analog model to illustrate the effectiveness of the control methodology. 
 
The controller showed the promised behavior exactly when controlling the digital model, 
but showed a damped oscillatory “ringing” behavior between sample periods for the 
analog system excited by the same control signal. 
 
The controller showed very high control effort required to obtain faster response times. 
 
Use of the control methodology for high sampling rates produced a controller that was 
ineffective for higher sampling rates, but very effective at slower sampling rates. 
 
The methodology showed a simple deductive process for developing the controller from 
the pole locations of the analog model to be controlled. 
 
The methodology showed that a relatively fast settling time for a step input could be 
achieved. 
 
 
 
 


