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This is a continuation of a series of courses in the area of study of physics called engineering 
mechanics.  This series of courses is called Strength of Materials.  And this next course of the 
series is called What Every Engineer Should Know About Structures - Part C -  Axial 
Strength of Materials.  
 
The first courses of the series, called Statics, focused on solving problems related to the exterior 
(or externally) applied loads on a stationary body - a body at rest.  It is expected that you have a 
good background in the study of Statics.  If you are not familiar with statics, consider taking the 
two SunCam courses titled What Every Engineer Should Know About Structures - Part A - 
Statics Fundamentals and What Every Engineer Should Know About Structures - Part B - 
Statics Applications. 
 
The study of Strength of Materials takes the next step and focuses on solving problems dealing 
with the stresses within those members of a stationary body (beams, columns, cables, etc.).  This 
series will provide the tools for solving some of the most common structural design and analysis 
problems.  The focus will be on presenting simplified methods of solving problems. 
 
This course includes: 

• stress and strain in a member, and their relationship, including material properties such as 
Hooke's Law and modulus of elasticity; 

• axial loads in tension and compression, including deformation; 
• shear stresses, shear modulus of elasticity, single and double shear, and punching shear; 
• design stresses and factors of safety; 
• temperature deformation and thermal stresses, and; 
• cross sectional properties of structural members including determining the centroid of a 

cross section.  

The next course in this series, What Every Engineer Should Know About Structures - Part D 
– Bending Strength of Materials, focuses on moments of inertia, torsional stresses and 
deformations, bending stresses including shear and moment diagrams, and deflection of beams.  

 
 
  

http://www.suncam.com/


 
What Every Engineer Should Know About Structures-Part C-Axial Strength of Materials 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2016 Professor Patrick L. Glon, P.E. Page 3 of 40 

 

WHAT IS STRENGTH OF MATERIALS 
Strength of Materials is part of the division of physics known as engineering mechanics.  The 
study of Strength of Materials considers the internal forces in structural elements to determine: 

1. the stress and deformation within the member (stress analysis); 

2. the required size of the member to support the applied loads (design analysis); or 

3. the load carrying capacity of a structural system or member (load analysis). 

 
The first part of engineering mechanics, usually known as "statics", covers material related to 
maintaining equilibrium balance of a particular structural system with external loads (such as 
truss, frame, etc.) or a particular structural member (such as a beam, column, step ladder, etc.).  
External loads produce support reactions which maintain equilibrium of the structural system or 
member.  The magnitude of the reactions are such that they create (or maintain) a zero sum of 
forces in the x-direction and the  y- direction and the sum of the moments at any point equals 
zero.  In statics, the structural system or member is assumed to be rigid - a rigid body.  Assumed 
not to deform.  And assumed to have unlimited strength 
 
In real life, materials are not rigid and they do not have unlimited strength.  Materials supporting 
external loads stretch, bend, and shorten; they get thinner or fatter; and they twist, and undergo 
other deformations - they are certainly not rigid.  And, of course, all materials do have an upper 
limit on their strength and they fail when they reach that limit. 
 
The applied external loads on a member are transmitted through the member to the supports (and 
vice versa) via internal forces within the member to maintain equilibrium.  As this internal force 
transmission takes place, the structural system experiences stresses and deformations.   
 
 
 
EQUILIBRIUM and SIGNIFICANT FIGURES 
Equilibrium 
All of Statics and Strength of Materials is based on equilibrium of a body at rest.  In two 
dimensional systems, the sum of forces in the vertical direction always equals zero.  The sum of 
forces in the horizontal direction always equals zero.  And, the sum of the moments at any point 
always equals zero. 
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Significant figures  
Although most of us like our calculations to be precise, that is not always the case in real-life 
problems.  Certainly we must know the procedures and the logic behind the calculations, but we 
must also know the assumptions made to make the problems solvable, and for the solutions to 
have enough accuracy to be meaningful.  
 
Three significant figures for an "answer" is logical because of the following assumptions in the 
theory and the unknowns inherent in the problem: 

• The magnitude of the applied loads are usually only approximate. 
• The precise point of application of the load is difficult to determine with a high degree of 

accuracy. 
• Point loads are not really point loads - they occur over some real area. 
• "Frictionless" pins are not really frictionless. 
• The structural materials are not perfectly homogeneous. 
• Assumptions in the mathematics are often made to make the problem easily solvable. 
• The conditions of service for the member are unknown for the entire future life of the 

member. 
• Deflections - that effect the theory - are usually ignored in stress calculations. 

 
For the above reasons, answers in Statics and Strength of Materials are usually given to only 
three significant figures.  However the results of the intermediate calculations used to arrive at 
the answers are often carried to several significant figures.  
 
Significant Figures, Rounding, and the Solution of a Statics Problem – A Quick Review is a 
zero credit course intended for those who might find themselves a bit rusty and would like a 
quick refresher.  The information in the course is useful for application to solutions of structural 
problems. 

This course is free and can be downloaded at: 

http://www.suncam.com/authors/123Glon/statics.pdf 
 
 
 
AXIAL LOADS 
An axial load is a load on a member that has a line of action along the long axis of a member.  
Tension and compression loads are axial loads.  The drawings below show axial loads. 
 

http://www.suncam.com/
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 Axial Tensile Force   Axial Compressive Force 
      in a Cable     in a Column 
 
 
 
STRESS REVEALED 
Stress is a nifty concept.  It reduces any force, acting on any area, to a common denominator - 
unit stress.  Stress in a material is the internal resistance of a material to an externally applied 
load.   In this basic form, all unit stresses are relatable to one another.  Any member or material 
that encounters a stress of 100 pounds per square inch (psi) has a stress exactly twice as intense 
as any other member with a stress of 50 psi.  The study of strength of materials depends on 
understanding the principles of stress. 
 
Definition 
The definition: 

Unit stress - the magnitude of a force per unit area acting at some location. 
 
The unit stress, or just plain stress, is denoted by the lower case Greek letter sigma (σ).  The 
formula for unit stress is simple: 
 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐴𝐴𝑟𝑟𝑒𝑒𝑒𝑒

;       𝜎𝜎 =  𝐹𝐹
𝐴𝐴
 

 
The definition of unit stress contains one answer and three variables.  That's right, three 
variables. 
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Answer 
The answer, of course, is the value of unit stress.  The most common units for unit stress in the 
study of strength of materials are pounds per square inch (#

𝑖𝑖𝑖𝑖2� or psi); kips per square inch 

(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖2�  or ksi); and Newtons per square meter (𝑁𝑁

𝑚𝑚2� ).   
 
The three variables (in addition to the answer, σ) in the definition of unit stress are the force 
within the member, the area over which the force acts, and the location being considered. 
 
Location 
It is important to identify the location within (or along) the member where the unit stress will be 
determined (calculated).  Stresses can vary along the length of a member.  Frequently many 
points along the length of, say, a column, will have a different unit stress.   
 
Area 
The area used in the calculation of an axial unit stress is simply the cross-sectional area of the 
member at the location where the stress is wanted. 
 
Force 
The force used in the calculation of unit stress is an internal force within the member.  The 
applied external loads (also called forces) on a member create internal reactions within a member 
to resist and transfer those external loads to supports, other members, etc.   
 
The first step in finding the stress in a structural member at a particular point is determining the 
internal force in the element at that particular location.  The internal forces on a member can be 
calculated using the principles of equilibrium - ∑Fv = 0; ∑FH = 0; ∑M = 0.   
 
The procedure for finding the internal force in a member is: 
1) Draw a free body sketch of the entire structure 

2) Isolate the location  

i) pass an imaginary "cutting plane" through the member at the desired location 

ii) draw a partial free-body diagram - either the left free-body or the right free-body, or 

the upper or lower free-body.  Usually one of the free-bodies will be most convenient 

3) Show the unknown internal forces that could possibly act at the cut section 

http://www.suncam.com/
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i) from statics, remember that there are three unknowns for equilibrium - a vertical 

force, a horizontal force, and a moment 

4) Find the unknown force(s) using the equilibrium equations 

 
Example Problem 
Find the internal force at point "A" in the member shown below. 
 
First, pass a plane through the member at the location desired (Point "A" in this case).  Then list 
all the possible forces that could possibly act on that plane (HA, VA, and MA).  And, finally, using 
statics principles, determine the forces acting on Point "A" (or on the cross section at Point "A") 

 
Notice in the problem above that the internal vertical force on the cross section is 50 pounds.  
And that it acts upward on the upper free-body diagram.  And that it acts downward on the lower 
free-body diagram.  This is consistent with the principles of equilibrium - each section of the 
free-body must be in equilibrium. 
 
In the following example problems, we will only draw one section of the free-body diagram to 
solve the problems.  Only one free-body is necessary since the forces are identical in magnitude 
(not in direction) on both free-bodies. 
 
Now, let's work a couple of stress calculation problems ... 
 
Example Problem 
What is the stress in the member at point A in the drawing on the next page? 
 

Calculations on upper free-body 
ΣFH = 0  ⇨  HA = 0 
ΣFV = 0  ⇨  VA = 50# ↑ 
ΣM @ A = 0  ⇨  MA = 0 
 
 
Calculations on lower free-body 
ΣFH = 0  ⇨  HA = 0 
ΣFV = 0  ⇨  VA = 50# ↓ 
ΣM @ A = 0  ⇨  MA = 0 
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Solution      Cut the member at point A and draw a free body diagram.  In this case, let's use the 
top free-body diagram  Show the possible forces that could act on that free-body diagram at 
Point "A".  Then, solve for the forces (notice that there is only a vertical force at that point); 
calculate the area of the cross section; and finally solve for the stress in the member at Point "A". 
 

 
In this example problem the area of the column is constant along the length of the column.  And 
the force in the column is also constant along the length of the column.  Therefore, the stress in 
the member is constant along the length of the column.  The point "A" could be anywhere along 
the length of the column and the stress would be the same. 
 
Example Problem 
What is the stress in the member at points A and B in the column shown on the next page?  
 
In this example problem notice that the area of the column is constant for the entire length of the 
column.  But in this case, the load is different at different points along the length of the column.  
Therefore, the stress in the member is different at points "A" and "B" along the length of the 
column. 
 
Solution     Cut the member at points "A" and "B" and draw the most convenient free-body 
diagrams;  solve for the vertical forces (the only ones acting on the cross sections);  and solve for 
the stress at each point - "A" and "B". 
 

Force at point A:  𝐹𝐹 = 𝑉𝑉 = 24# ↑ 
  Area of member at point A:  𝐴𝐴 = 4" x 4" = 16𝑖𝑖𝑖𝑖2 
 
          Stress at Point A:  𝜎𝜎 =  𝐹𝐹

𝐴𝐴
=  24 #

16 𝑖𝑖𝑖𝑖2 = 1.5 𝑝𝑝𝑝𝑝𝑝𝑝 
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Example Problem 
What is the stress in the member at points A, B, and C?  Notice that we won't be using the quotes 
around the points A, B, and C from now on.  There is no need, since we all understand what 
we're talking about. 
 
Solution   Cut the member at points A, B, and C and draw three free-body diagrams. 
 

Cut the member at point "A" and draw a free body diagram. 
Force at point A:  𝐹𝐹 = 𝑉𝑉 = 24# ↑ 

Area of member at point A:  𝐴𝐴 = 4" x 4" = 16𝑖𝑖𝑖𝑖2 
 

Stress at Point A:  𝜎𝜎 =  𝐹𝐹
𝐴𝐴

=  24 #
16 𝑖𝑖𝑖𝑖2 = 1.5 𝑝𝑝𝑝𝑝𝑝𝑝 

 
 

Cut the member at point B and draw a free body diagram. 
Force at point B:  𝐹𝐹 = 𝑉𝑉 = 4# ↓ 

Area of member at point B:  𝐴𝐴 = 4" x 4" = 16𝑖𝑖𝑖𝑖2 
 

Stress at Point B:  𝜎𝜎 =  𝐹𝐹
𝐴𝐴

=  4 #
16 𝑖𝑖𝑖𝑖2 = 0.25 𝑝𝑝𝑝𝑝𝑝𝑝 

Cut the member at point A and draw a free-body diagram. 
Force at point A:  𝐹𝐹 = 300# ↑ 

Area of member at point A:  𝐴𝐴 = 3" x 3" = 9𝑖𝑖𝑖𝑖2 
Stress at Point A:  𝜎𝜎 =  𝐹𝐹

𝐴𝐴
=  300 #

9 𝑖𝑖𝑖𝑖2 = 33.3 𝑝𝑝𝑝𝑝𝑝𝑝 
 

Cut the member at point B and draw a free body diagram. 
Force at point B:  𝐹𝐹 = 300# ↑ 

Area of member at point B:  𝐴𝐴 = 4" x 4" = 16𝑖𝑖𝑖𝑖2 
Stress at Point B:  𝜎𝜎 =  𝐹𝐹

𝐴𝐴
=  300 #

16 𝑖𝑖𝑖𝑖2 = 18.8 𝑝𝑝𝑝𝑝𝑝𝑝 
 

Cut the member at point C and draw a free body diagram. 
Force at point C:  𝐹𝐹 = 300# ↓ 

Area of member at point C:  𝐴𝐴 = 5" x 5" = 25𝑖𝑖𝑖𝑖2 
Stress at Point C:  𝜎𝜎 =  𝐹𝐹

𝐴𝐴
=  300 #

25 𝑖𝑖𝑖𝑖2 = 12 𝑝𝑝𝑝𝑝𝑝𝑝 
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Notice in this case, we only drew the upper portion of the column (free-body diagram) for points 
A and B.  And the bottom free-body diagram for point C.   
 
Also, in this example problem, the cross sectional area of the column varies along the length of 
the column.  And the load remains constant along the length of the column.  Therefore the stress 
in the member varies along the length of the column. 
 
 
 
Stress Distribution 
In all of the above example problems (which were axial loads along the long axis of a member), 
the compressive force is assumed to act uniformly over the entire cross section of the member 
creating a uniform stress.    If the force varies across the cross sectional area of the member, it 
will create a non-uniform stress.  (We'll deal with non-uniform stresses in the next course.  Right 
now, let's just understand the concepts of uniform axial stress.)  The exact same assumption is 
also true for tension members - the tensile force is uniformly distributed across the entire face of 
the cross section.  The diagrams below are useful in visualizing the stress acting uniformly over 
the cross section. 
 
Note:  The assumption of uniform stress across the cross section is one reason that we only use 
three significant figures for the answer to problems.  In real life, the loads (and, therefore, 
stresses) are not constant over the entire cross section.  They are not uniformly distributed.  They 
vary from some maximum to some minimum.  However, to solve a problem with non-uniform 
varying loads is a complex mathematical calculation.  To simplify the calculation, assume the 
loads are uniform.  And, therefore, use only three significant figures in the answer. 
 

 
 

     Compressive Force    Tensile Force 
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In other cases it is more convenient to visualize the stress acting on only a very small unit of the 
member - an infinitesimal element.  Consider a very small element inside the square compression 
member shown above.  If an element is taken from a body in equilibrium, the element is also in 
equilibrium.  Therefore, there must be a compressive stress on the top of the element and a 
compressive stress on the bottom of the element.  The three-dimensional cube (element) is the 
complete unit.   
 
Instead of a three-dimensional figure, the  unit is often shown as a two-dimensional figure with a 
force on top and a force on the bottom.   If the element is taken to be a unit area (an 
infinitesimally small area), the force produces a unit stress on the element as shown below.  
Similarly, for the round member in tension, an element of unit area taken from the member will 
have a tensile force on the top and bottom faces.  This force will then produce a unit stress on the 
element as shown below. 

 
      Element in compression  Element in Tension 
 
 
 
SHEAR STRESS 
There is another kind of stress besides axial stress.  It is called shear stress.  Shear stress is 
neither tension nor compression.  Nor is it an axial load.  It is more like a slipping or sliding of a 
member across itself. 
 
Single shear 
Single shear is the name given to a shear stress where only one plane through the member is 
subjected to the shearing force.  The simplest example of single shear stress is the shearing of a 
bolt.  The drawing on the next page shows two plates bolted together with a single bolt through 
both plates.  The plates are being pulled by a force F.  The plates each exert a force on the bolt 
that is perpendicular to the long axis of the bolt (and, therefore, is not an axial load).  The action 
of the forces on the bolt tend to cause the bolt to slip or slide across the cross section of the bolt.  
This action on the bolt is single shear - also called direct shear stress. 
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If we isolate the bolt, and show only the forces acting on the bolt, we can 
easily see and compute the direct shear stress on the bolt.  In the adjacent 
drawing the applied load, F, is transferred to the bolt through the plates.  
Only the forces F are acting on the bolt.  The bolt material will resist slipping 
or sliding along the shear plane.  This resistance is the shear stress.  The 
forces on the bolt are assumed to be resisted uniformly across the cross 
section of the bolt.   
 
Shear stress is denoted by the lowercase Greek letter tau (τ).  Direct shear 
stress is calculated by dividing the total force (F) on the cross section by the 
cross sectional area (A) resisting the force. 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜏𝜏 =  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
=  

𝐹𝐹
𝐴𝐴

 
 
Example Problem 
Using the two bolted plates as an example, draw a free-body diagram of the bolt.  Pass a plane 
through the bolt at the location of the direct shear stress and draw only the lower portion of the 
bolt.  Show the force from the plate acting on the bolt and the resultant (resisting) direct shear 
stress on the cut section. 
 
Let's say the bolt is 1/2 inch in diameter and the force pulling on the plates is 500 pounds.  What 
is the shear stress in the bolt?  (Note:  1,000 pounds = 1 kip.  Sometimes it makes more sense to 
show an answer in kips per square inch rather than pounds per square inch.) 

 
First, calculate the cross sectional area of the bolt over which the shearing 
force acts. 
 

𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐴𝐴 =  
𝜋𝜋𝐷𝐷2

4
=  

𝜋𝜋(0.50 𝑖𝑖𝑖𝑖)2

4
= 0.196349 𝑖𝑖𝑖𝑖2 

 
Then calculate the shear stress in the bolt at the cut section. 
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𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜏𝜏 =  
𝐹𝐹
𝐴𝐴

=  
500#

0.196349 𝑖𝑖𝑖𝑖2 = 2546 𝑝𝑝𝑝𝑝𝑝𝑝  ⇒   2550 𝑝𝑝𝑝𝑝𝑝𝑝 = 2.55 𝑘𝑘𝑘𝑘𝑘𝑘 
 
Notice in the above calculation that the shear area calculation was taken to six decimal places 
(six significant figures) while the answer was only taken to three significant figures.  The six 
decimal result is a precision in arithmetic.  The three significant figure answer represents the 
validity of the answer.  In most real world problems, only the first few digits of an answer are 
valid, or "significant".  The answer cannot be more accurate than the least accurate number used 
in the statement of the problem.  Answers in Strength of Materials are commonly only taken to 
three significant figures. 
 
Double Shear 
Double shear occurs when a bolt or pin resists the externally applied load through two cross-
sections of the member.  Since the bolt in the above example is being sheared along only one 
plane, it is called single shear.   
 
It is common to have a bolt or pin in double shear - for example hitching a wagon tongue to a 
tractor puts the pin in double shear.  In the drawing below, a pin is dropped through the holes in 
the wagon tongue and the hole in the tractor hitch.  As the tractor pulls the wagon, the pin is 
subjected to shearing forces along two cross sectional planes. 

 
The tractor hitch is often a single bar with a slightly oversized hole (so the pin will drop through 
easily).  The wagon hitch is often an upper and lower bar with oversized holes.  The upper and 
lower bar allows the wagon tongue to bounce around (up and down) and not pull the pin out.  
Sometimes the pin has a "key" in the end to keep it in place.  Other times a pin is simply dropped 
through the holes and gravity holds it in place. 
 
Example Problem 
If the tractor is pulling with a force of 500 pounds, and the connecting pin has a 3/8th inch 
diameter, what would be the shear stress in the pin in the drawing above? 
 
The pin is resisting the tractor pulling force with two cross sections.  The shear area is the sum of 
the two cross sectional areas as shown in the bolt free-body diagram above. 

http://www.suncam.com/
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𝐴𝐴 = 2 �
𝜋𝜋𝐷𝐷2

4
� = 2 �

𝜋𝜋�3
8�  𝑖𝑖𝑖𝑖�

2

4
� = 0.22089 𝑖𝑖𝑖𝑖2 

 
And, the shear stress is calculated as: 
 

𝜏𝜏 =  
𝐹𝐹
𝐴𝐴

=  
500 #

0.22089 𝑖𝑖𝑖𝑖2 = 2,264 𝑝𝑝𝑝𝑝𝑝𝑝  ⇒   2260 𝑝𝑝𝑝𝑝𝑝𝑝 = 2.26 𝑘𝑘𝑘𝑘𝑘𝑘  
 
In the two examples above, we are assuming that the bolt and pin have sufficient shear strength 
to resist the direct shear stresses induced by the loads. We assume the bolt and pin will not fail.  
We'll get to the allowable shear stress and bolt capacities in a bit.  But first, here is a real 
example of a bolt failing in double-shear. 
 
I was splitting wood with a hydraulic log splitter and got the splitting wedge stuck in a knotted 
piece of wood.  The wedge would not penetrate the wood any further, nor would the wood split 
to release the wedge.  As is common, the bolt used to connect the hydraulic ram to the splitting 
wedge is not strong enough to resist the full force of the hydraulic ram.  This is done to prevent 
damage to the hydraulic system or to the wedge.  The inexpensive and easy to install bolt is 
designed to fail in shear before causing damage to the expensive equipment.  Instead of backing 
off the power, I decided to push ahead and continue loading the connection to see if the bolt 
really would fail first.  Just as expected, the bolt sheared and failed.  It was exciting!  (I did it in 
the name of science.  That's my story and I'm sticking to it   ) 

 
Notice in the bolt photo that the bolt is bent in addition to being broken.  That means that the bolt 
did not fail in PURE shear.  There were some bending stresses too.  Notice also that the loads are 
shown as point loads when in fact they are distributed loads.  And notice the crushing of some of 
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the threads of the bolt.  However, the assumptions made that it did fail in pure shear with point 
loads are still valid.  These are reasons for using only three significant figures in the answer. 
 
Cutting Shear 
There are other times when we want the material to fail in direct shear.  One example is the 
shearing action used by a sheet metal worker.  When making sheet metal ducts, the worker uses a 
pair of shears similar to scissors to cut pieces of thin sheet metal.  One blade of the shears slides 
over the other blade to cut the material.  The shearing action progresses along the sheet metal 
cutting only a small part of the total cut at a time.  The objective is to cut the material.  You want 
the material to fail in shear.   
 
The cutting action of the sheet metal worker is exactly the same action of the single and double 
shearing action of the bolts above.  The material - either bolt or sheet metal - is subjected to 
either a slipping or sliding action when an external load is applied. 
 
Punching Shear 
Another example where the end result is to fail a material in direct shear 
occurs in a punching operation.  The goal of a punching operation is to 
create a hole in a sheet of material.  The material fails in shear - hence the 
name punching shear.  A punch is pushed through a thin sheet of 
material creating a hole called a slot.  The piece of material removed from 
the sheet is called the slug.  Sometimes it is the slug that is wanted - other 
times it is the slot that is the end product of the punching operation. 
 
In punching operations the applied force of the punch is resisted by the 
area of the part actually being sheared.  That area is the portion of the 
material that fails - the surface area of the cut portion of the material.  The area of the edge of the 
slug, or the area of the edge of the slot.  This area is calculated as the perimeter distance of the 
slug times the thickness of the slug.  Which, of course, also equals the perimeter distance of the 
slot times the thickness of the material being punched.  The shear stress is then 
calculated as: 
 

𝜏𝜏 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

=  𝐹𝐹
𝐴𝐴
  

 
Example Problem 
In the adjacent drawing, what is the shear stress in the material if a force of 
8,000 pounds is required to punch out the slug? 
 
The shear area is the perimeter of the slot times its thickness.   
 

𝐴𝐴 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝 𝑥𝑥 𝑡𝑡 
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Notice the perimeter of the slot (and the slug) consists of a 1" x 2" rectangle and a 1" diameter 
circle. 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝 = 2(2 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒) +  𝜋𝜋(1 𝑖𝑖𝑖𝑖𝑖𝑖ℎ) = 7.14159 𝑖𝑖𝑖𝑖 

𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡 =  
1
8

 𝑖𝑖𝑖𝑖𝑖𝑖ℎ 

𝐴𝐴 = 𝑝𝑝 𝑥𝑥 𝑡𝑡 = (7.14159 𝑖𝑖𝑖𝑖) �1
8

 𝑖𝑖𝑖𝑖� = 0.89270 𝑖𝑖𝑖𝑖2  
 
and 

𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜏𝜏 =
𝐹𝐹
𝐴𝐴

=  
8,000 #

0.89270 𝑖𝑖𝑖𝑖2 = 8,962 𝑝𝑝𝑝𝑝𝑝𝑝  ⇒   8,960 𝑝𝑝𝑝𝑝𝑝𝑝 = 8.96 𝑘𝑘𝑘𝑘𝑘𝑘 
 
Shear Stress Element 
An infinitesimally small cubic element of the material from the shear plane of the single shear 
and double shear problems above would look like the cube shown below.  For example an 
infinitesimally small cube (shown on the next page) taken from the shear plane of the single 
shear bolt would have a horizontal shear stress acting toward the left on the top surface.  For 
equilibrium of the cube in the horizontal direction, there must be an equal and opposite shear 
stress on the bottom of the cube.  This is the slipping or sliding action characteristic of shear.  
Note that the shear stresses are shown as an arrow with only a "half" of an arrow head.  
 
The two stress vectors - one on the top and one on the bottom - on the cube cannot act alone.  
Together they form a couple that tends to rotate the cube.  The cube subjected to just the two 
horizontal shears - one in each direction - is not in equilibrium.  For equilibrium, there must be 
an opposite and equal couple.  This couple is created by the equal - and opposite - shear stresses 
developed on the vertical sides of the cube.  These four shear stresses - two couples - maintain 
equilibrium of the cube. 
 
An infinitesimally small cubic element of the material from the shear plane of the cutting shear 
and the punching shear problems above would also look exactly like the cube shown on the next 
page.  The shear stresses shown would, however, be developed slightly differently.  Instead of 
beginning with two horizontal shear stresses and then adding the vertical couple, we would begin 
with the vertical shear stresses and then add the horizontal couple for equilibrium.  The end 
result is the same. 
 
The stress element is often drawn in two dimensions as shown.  Notice that the stress vectors 
shown on adjacent sides of the cube meet at the corner of the cube.  The two dimensional view is 
useful in visualizing the stresses acting at a point within a material subjected to shear. 
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Also notice - and this is a biggie - that a horizontal shear stress (which is produced by horizontal 
forces) creates a vertical shear stress.  Because there is a vertical shear stress, there must be 
vertical forces.  And there are!  Horizontal external forces on a bolt produce vertical forces (and, 
therefore vertical shears) in the bolt.  It turns out that the vertical shear stress in the bolt is 
usually quite small compared to the horizontal shear stress because of the area over which the 
forces act.  The horizontal force acts over an area determined by the diameter of the bolt while 
the vertical force acts over an area determined by the length of the bolt.  And in most cases the 
bolt is much longer than it is in diameter.  In the usual case of bolts, the vertical shear stress is 
ignored.  However, look out for very large diameter, very short bolts.  The vertical shear just 
might govern. 
 
In the case of some beams, the created shear acting perpendicular to the load is critical.  For 
example a horizontal beam with a vertical load produces a horizontal shear that can be 
considerable.  We will deal with those stresses in the next course. 
 
 
 
STRAIN REVEALED 
Any structural member under tensile or compressive stresses will deform.  Members under 
compressive stress will get shorter (and thicker).  Members under tensile stresses will get longer 
(and thinner).  The total deformation of a member under load can, of course, be measured.  It can 
also be predicted.  The "thinner" and "thicker" deformations are usually ignored. 
 
The drawing below shows a bar subjected to an axial tensile load "F".  The original length of the 
bar is denoted as a lowercase "L" (l).  The total deformation of the bar, i.e., the increase in length 
of the bar, is denoted as a lowercase Greek letter delta (δ).  
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Let's say that the original length (l) of the bar is 10.000 inches.  And the total deformation (δ) is 
0.046 inches.  In other words, before the load F is applied, the total length of the bar is 10.000 
inches.  And after the load F is applied the total length of the bar is 10.046 inches. 
 
Strain, also called unit deformation, is found by dividing the total deformation by the original 
length of the bar.  The strain, or unit deformation, is denoted by a lowercase Greek letter epsilon 
(ε).  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜀𝜀 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
=  

𝛿𝛿
𝑙𝑙
 

 
Example Problem 
What is the strain for the rod shown above? 
 

𝜀𝜀 =  
𝛿𝛿
𝑙𝑙

=  
0.046 𝑖𝑖𝑖𝑖

10.000 𝑖𝑖𝑖𝑖
= 0.0046 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖⁄  

 
Since the inch per inch units could be cancelled during a calculation, the strain could be 
considered dimensionless.  However, it is better to leave the units as 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖⁄   (or 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚⁄ ) to 
maintain the definition of strain as deformation per unit length of the member. 
 
 
 
MATERIAL PROPERTIES 
In the design or analysis of a structural member, it is important to understand the properties of 
the material being considered.  For concrete and steel, these properties are discussed in detail in 
the three SunCam courses titled Fundamentals of Concrete;  Fundamentals of Steel - Part A; 
and Fundamentals of Steel - Part B. 
 
Real Materials Have Limited Strengths 
All real materials have an upper limit on their strength.  When a material reaches its upper limit, 
its ultimate strength, it will fail.  It will no longer be able to carry its intended load.   
 
Failure can come in three different ways: 

1. it may fracture (tear in tension - crush in compression); 

2. it may stretch, or deform, excessively and no longer able to perform properly; or 

3. the member may buckle becoming unstable and no longer able to carry its load. 

 
Whatever the mode of failure may be, as the forces in the material continually increase, the 
member eventually reaches its upper limit, its maximum load carrying capacity, and fails. 
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Of course, different materials have different strengths.  For example steel can have an ultimate 
strength of around 250,000 psi while the ultimate strength of concrete is in the range of a few 
thousand psi.  And some materials have different strengths when loaded in different directions.  
For example wood is stronger when loaded parallel to the grain than when loaded perpendicular 
to the grain.  And concrete is stronger in compression than it is in tension. 
 
Stress - Strain Diagrams  
The stress-strain diagram of a particular material shows several components of the materials 
strength properties.  One of these properties is the ultimate strength of the particular material.  
The ultimate strength of a material is the high point on its stress-strain diagram - its ultimate 
stress at which failure occurs..  The stress-strain diagrams of steel and concrete are shown below 
(in their general shape) with the ultimate strength noted. 
 

                                                   Mild Steel                    Concrete 
 
The stress-strain diagram also shows the yield point of a material.  The yield point is the stress at 
which the material begins to deform without an apparent increase in load.   For many steels, the 
yield point is quite prominent as shown in the diagram above.  In materials such as concrete, 
where there is no obvious yield point, a yield strength is determined.  By plotting a line 
approximately parallel to the straight line portion of the curve beginning at maximum acceptable 
strain, usually 0.2% (ε = 0.002 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖⁄ ), a yield strength is determined.  In practice, yield point 
and yield strength are used for the same purposes.  And the terms are often used interchangeably.  
 
The ultimate strength and yield point (yield strength) for materials are almost always listed in 
reference books on the mechanical properties of materials. 
 
 
 
RELATIONSHIP OF STRESS AND STRAIN 
A material behaves elastically when its stress levels are lower than the yield point.  That is, at 
stresses below the yield point the material will return to its original size and shape after the load 
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is removed.  The portion of the stress-strain diagram showing stress below the yield point is 
essentially a straight line.  Way back in 1678, a scientist named Robert Hooke discovered that 
materials in the elastic range have a definite - and constant -relationship between the stress and 
the strain.  Stress is proportional to strain in a particular material.  His relationship became 
known as Hooke's Law.  Hooke's Law states that there is a straight line relationship between the 
stress (σ) and the strain (ε): 

𝜎𝜎 = 𝐸𝐸𝐸𝐸         𝐸𝐸 =  
𝜎𝜎
𝜀𝜀

 
 
All of our discussions of Strength of Materials will be within the elastic range of the material.  
That means that if a material deforms a bit under a load, it will return to its original size and 
shape after the load is removed.  We will not deal with stresses and strains that cause a material 
to exceed its elastic limit (its yield point).  When materials exceed their elastic limit or yield 
point, they are considered either permanently deformed or deformed beyond their useful limit 
and the concepts here do not apply. 
 
The modulus of elasticity, E, is the slope of the line of the stress-strain diagram in the elastic 
range.   
 

𝐸𝐸 =  
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=  
∆𝜎𝜎
∆𝜀𝜀

=  
𝜎𝜎
𝜀𝜀

 

 
The modulus of elasticity is a fairly large number.  For example, if a material requires a stress of 
30,000 𝑝𝑝𝑝𝑝𝑝𝑝 to achieve a strain of 0.001 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖⁄ , the modulus of elasticity of that material would be 
30 million pounds per square inch as shown below. 
 

𝐸𝐸 =  
𝜎𝜎
𝜀𝜀

=  
30,000 𝑝𝑝𝑝𝑝𝑝𝑝

0.001 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖⁄ = 30,000,000 𝑝𝑝𝑝𝑝𝑝𝑝 = 30𝑥𝑥106 𝑝𝑝𝑝𝑝𝑝𝑝 = 30𝑥𝑥103 𝑘𝑘𝑘𝑘𝑘𝑘 

 
The modulus of elasticity is different for different materials.   
 
Steel   
Steel is a homogenous material which is manufactured in an environment where strict quality 
control measures are enforced.  It is a nearly uniform material.  As such, all commonly used 
structural steels have the same modulus of elasticity.  The American Institute of Steel 
Construction specifies the modulus of elasticity for steel as 29 x 106 psi. 
 
Concrete   
The modulus of elasticity of concrete varies as the ultimate strength of the concrete mix and as 
the specific weight of concrete.  According to the American Concrete Institute , the modulus of 
elasticity (𝐸𝐸𝑐𝑐) of concrete can be estimated as  𝐸𝐸𝑐𝑐 = 33𝛾𝛾2

3�  �𝑓𝑓𝑐𝑐
′ , where γ = unit weight of 
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concrete, and 𝑓𝑓𝑐𝑐
′ is the ultimate strength of the concrete mix.  For common construction grade 

concrete, the nominal value of the unit weight of concrete is 150 #/ft3.  Normal values for the 
ultimate compressive strength of concrete varies from around 2,000 psi to around 7,000 psi.  The 
tensile strength of concrete is only a few hundred pounds per square inch - therefore it is usually 
assumed to be zero.  (For concrete structures where the concrete members have portions of their 
cross sections in tension, reinforcing steel is placed in the member to resist the tensile forces.) 
 
Below is a table showing the results of the ACI formula for 𝐸𝐸𝑐𝑐 using γ = 150 #/ft3 and various 
values of the ultimate strength of concrete, 𝑓𝑓𝑐𝑐

′.  
 

Modulus of elasticity for concrete 
Strength of concrete, 𝑓𝑓𝑐𝑐

′, psi Modulus of elasticity, Ec, psi 
2000 2.7 x 106 
3000 3.3 x 106 
4000 3.8 x 106 
5000 4.3 x 106 
6000 4.7 x 106 
7000 5.1 x 106 

 
 
Wood   
The modulus of elasticity of wood (just as with strengths of concrete) also varies from species to 
species.  Each species of wood and each grade within that species has a different modulus of 
elasticity.  The table below and continued on the next page shows the modulus of elasticity for a 
few species of wood, and a few grades within each species. 
 

Modulus of elasticity for wood 
Type and grade Modulus of elasticity, psi 

Douglas fir - 2 to 4 in thick,  
6 in and wider 

 

No. 1 1.8 x 106 
No. 2 1.7 x 106 
No. 3 1.5 x 106 

  
Hemlock - 2 to 4 in thick,  
6 in and wider 

 

No. 1 1.5 x 106 
No. 2 1.4 x 106 
No. 3 1.2 x 106 
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Southern pine - 21
4
 to 4 in thick, 

6 in and wider 

 

No. 1 1.6 x 106 
No. 2 1.3 x 106 
No. 3 1.3 x 106 

 
When a material obeys Hooke's Law - i.e., stresses stay below the yield point (elastic limit) - the 
following is true: 

𝐸𝐸 =  
𝜎𝜎
𝜀𝜀

 
 
If the member is subjected to an axial load (F), we can substitute for stress (𝜎𝜎 =  𝐹𝐹

𝐴𝐴
) and strain 

�𝜀𝜀 =  𝛿𝛿
𝑙𝑙
� as follows: 

𝐸𝐸 =  
𝐹𝐹

𝐴𝐴�
𝛿𝛿

𝑙𝑙�
 

 
Solving for δ: 

𝛿𝛿 =  
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴

 ⇨  
(#)(𝑖𝑖𝑖𝑖)

(𝑖𝑖𝑖𝑖2)(# 𝑖𝑖𝑖𝑖2⁄ )  ⇨ 𝑖𝑖𝑖𝑖 

 
This formula gives the relationship for deformation, load, length of member, cross sectional area 
of the member, and the modulus of elasticity for a material loaded axially.  The member must 
have a constant cross sectional area, and the stresses must be under the elastic limit. 
 
Example Problem 
A 1/4 inch diameter steel cable is 8.000 feet long.  If it is subjected to a tensile force of 6,000 
pounds, what will be the final length of the cable?  The modulus of elasticity of steel is 29 x 106 
psi.  

 
First determine the total elongation of the cable after the load is applied.  Then add the 
elongation to the original length to determine the final length.  All units in the calculation must 
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be consistent, therefore the 8 feet must be converted to inches.  Also remember that the area of a 

circle is πr2 or 𝜋𝜋 𝐷𝐷2

4
  where r = 𝐷𝐷

2
 

𝛿𝛿 =  
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴

=  
(6,000 #)(8 𝑓𝑓𝑓𝑓 𝑥𝑥 12 𝑖𝑖𝑖𝑖

𝑓𝑓𝑓𝑓� )

�𝜋𝜋 �0.25 𝑖𝑖𝑖𝑖
2 �

2
�  (29𝑥𝑥106  # 𝑖𝑖𝑖𝑖2� )

=  
576,000 # − 𝑖𝑖𝑖𝑖

1,423,532 #
=  0.405 𝑖𝑖𝑖𝑖 

 
The final length of the loaded cable is then 8 ft plus 0.405 inches equals 96.405 inches. 
 
Example Problem 
A 2" x 2" block of wood is 15 inches long.  Its modulus of elasticity is 1.4 x 106 psi.  A load of 

4,000 pounds is set on top of the block.  What is the final length of the 
block of wood?  Assume the block only shortens - it does not buckle. 
 
Calculate the total deflection of the block and then subtract it from the 
original length. 
 

𝛿𝛿 =  
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴

=  
(4,000 #)(15 𝑖𝑖𝑖𝑖)

(2 𝑖𝑖𝑖𝑖 𝑥𝑥 2 𝑖𝑖𝑖𝑖) (1.4𝑥𝑥106  # 𝑖𝑖𝑖𝑖2� )
=  

60,000 # − 𝑖𝑖𝑖𝑖
5,600,000 #

=  0.011 𝑖𝑖𝑖𝑖 

 
The final length of the block of wood is 15 inches minus 0.011 inches equals 14.989 inches. 
 
Example Problem 
A 36 inch long round steel rod is to support a hanging load of 7,000 pounds (axial force - 
tension).  The modulus of elasticity of the rod is 29 x 106 psi.  What minimum diameter rod is 
required so that the stress in the rod is ≤ 20,000 psi AND the total elongation of the rod is ≤ 17 x 
10-3 inches (0.017 inches)? 
 

The solution involves checking two requirements - the first requirement is 
the minimum diameter required to keep the stress less than or equal to 
20,000 psi, and the second requirement is the minimum diameter required to 
keep the maximum elongation less than or equal to 0.017 inches.  The larger 
diameter governs the selection.  We will first determine the minimum cross 
sectional areas that meets each requirement; select the larger of the two;  and 
then calculate the diameter for that area. 
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For stress, the minimum cross sectional area is: 

𝐴𝐴 =  
𝐹𝐹
𝜎𝜎

=  
7,000 #

20,000 # 𝑖𝑖𝑖𝑖2⁄ = 0.3500 𝑖𝑖𝑖𝑖2 

 
The cross sectional area of the rod must be at least 0.3500 in2.  If the area is less than that, the 
stress in the rod would be greater than 20,000 psi.  And would not meet the stress requirement. 
 
For total elongation, the minimum cross sectional area is: 

𝐴𝐴 =  
𝐹𝐹𝐹𝐹
𝛿𝛿𝛿𝛿

=  
(7,000 #)(36 𝑖𝑖𝑖𝑖)

(0.017 𝑖𝑖𝑖𝑖)(29 𝑥𝑥 106 𝑝𝑝𝑝𝑝𝑝𝑝) = 0.5112 𝑖𝑖𝑖𝑖2  

 
The cross sectional area of the rod must be at least 0.5112 in2.  If the area is less than that, the 
elongation of the rod would be greater than 0.017 inches.  And would not meet the elongation 
requirement. 
 
The minimum diameter rod that meets both the stress and the total elongation requirements is a 
round rod with a cross sectional area of at least 0.5112 in2.  The diameter of a rod with a cross 
sectional area of 0.5112 in2, or greater is: 

𝐴𝐴 =  
𝜋𝜋 𝐷𝐷2

4
   𝑎𝑎𝑎𝑎𝑎𝑎  𝐷𝐷 =  �4 𝐴𝐴

𝜋𝜋
 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷 =  �4 𝐴𝐴
𝜋𝜋

=  �(4)(0.5112 𝑖𝑖𝑖𝑖2)
𝜋𝜋

= 0.807 𝑖𝑖𝑖𝑖 

 
To the nearest sixteenth of an inch, a rod with a 13/16 inch (0.8125") diameter would suffice.  
Or, if that size was not conveniently available, a 7/8 inch (0.875") diameter rod would work.  It 
would support the 7,000 pound load with a maximum stress of less than 20 ksi and a deformation 
of less than 0.017 inches. 
 
 
 
DESIGN STRESS 
We have been working with elongation due to direct stress on a member - either tension or 
compression.  Several assumptions are inherent in the formula for direct stress (𝜎𝜎 =  𝐹𝐹 𝐴𝐴⁄ ).   
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Some Assumptions 
The loaded member: 

1. must be straight. 
2. must have a uniform cross section over the entire length of the member. 
3. must be made from a homogeneous material. 
4. must be loaded along the centroidal axis of the member ( along the center of gravity of 

the cross section). 
5. in compression must be "short" so there is no tendency to buckle (we'll determine what 

"short" is later). 
 
If all of these conditions are met, a member could be loaded up to its yield strength without fear 
of failure.  And, in some cases, up to its ultimate strength without fear of failure.  However, in 
real life, the above five conditions are seldom, if ever, met perfectly.  An ever so slight bend in a 
member, or a load that is slightly offset from the exact center of gravity of the cross section, 
introduces bending stresses in the member (which are different from direct stresses - and, again, 
we'll get to bending stresses in another course).  Also, no cross section is perfectly uniform.  And 
no material is perfectly homogeneous.  For example, the aggregate in concrete is not exactly 
uniform is size, shape, or strength, and, the water-cement paste has different properties than the 
aggregate.  And there are imperfections in wood such as knots, checks, splits, cracks, etc.  All of 
this, again, suggests a reasonableness to using only three significant figures in an answer to a 
strength of materials problem. 
 
Failure 
Failure occurs when a load carrying member breaks or deforms excessively, making it 
unacceptable for its intended purpose.  Therefore, it is essential that the level of stress in the 
member never exceed the yield stress or, in some cases, the ultimate stress of the material.  The 
yield strength and ultimate strength of materials is often given in table form in reference 
manuals.  For example: 
 

Structural Steel 

Grade of steel Ultimate Strength 
𝜎𝜎𝑢𝑢 (ksi) 

Yield Strength 
𝜎𝜎𝑦𝑦 (ksi) 

A36  - shapes, plates, and bars 58 36 
A242  - shapes, plates, and bars 
 ≤ 3/4 inch thick 

70 50 

A514 - quenched & tempered 
alloyed steel: plate ≤ 21

2
 inches thick 

110 100 
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Design Stress 
To make sure a material (loaded member) doesn't fail in use, a maximum allowed design stress 
has been determined for each different material and for different loading conditions.  The 
maximum allowed stress for design and analysis is determined by applying a factor of safety to 
either the yield strength of the material or the ultimate strength of the material.   
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
   𝑂𝑂𝑂𝑂   

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

 
A different factor of safety (FS) is applied to each different material to account for its 
consistency.  For example, steel is more consistent than say, wood, because of the high standards 
of quality control during steel's manufacture.  We have a lot less control over the "manufacture" 
of wood material - it grows in nature with all the irregularities that that brings, many of which we 
never see (irregular grain pattern, tiny knots, etc.).  Therefore, steel has a lower factor of safety, 
giving it a higher percentage of its yield strength or ultimate strength as an allowed design stress.  
Whereas wood has a higher factor of safety, giving it a lower percentage for its allowed design 
stress. 
 
Working Stress and Allowable Stress 
The maximum allowed design stress is also called the working stress or allowable stress and is 
given by the formulas: 
 
 Based on yield strength - 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=  

𝜎𝜎𝑦𝑦

𝐹𝐹𝐹𝐹
=  

𝑠𝑠𝑦𝑦

𝐹𝐹𝐹𝐹
 

 
 Based on ultimate strength - 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  
𝜎𝜎𝑢𝑢

𝐹𝐹𝐹𝐹
=  

𝑠𝑠𝑢𝑢

𝐹𝐹𝐹𝐹
 

 
Allowable stress and working stress are often used interchangeably.  And, depending on which 
area of structural engineering you're working in (e.g., buildings, construction equipment, 
automotive, aerospace, etc.), and which material you're working with, different symbols are used 
for the yield strength and ultimate strength of a material.  Two symbols - σ and s - are shown in 
the formulas above to indicate stress, and are used mostly for metals, composite materials, and 
plastics.  When working with wood, F is used to indicate stress..  And, for those working in the 
field of concrete design and analysis, the ultimate strength - which is called the ultimate 
compressive stress (28 day strength) - is represented by the symbol 𝑓𝑓𝑐𝑐

′ .   
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Whatever the symbol used or the name given, the concept of allowable and working stress is the 
same - which is the upper limit divided by a factor of safety. 
 
Factor of Safety 
The factor of safety (FS) to be used for determining the allowable stress (working stress - design 
stress) in a particular material and under certain loading conditions has been determined over the 
years through testing, research, and trial and error by lots of smart people with lots of experience 
in the area.  Special interest groups also determine the FS for their material - e.g., American 
Institute for Steel Construction for steel; American Concrete Institute for concrete, etc. 
 
Some factors that influence the factor of safety are: 

• physical size of the material - thicker or larger pieces usually have a higher FS, and 
therefore lower design stresses, than thinner pieces; 

• industry in which you are working - aerospace has smaller FS than construction 
equipment; 

• type of loading - The FS is higher for impact loading than it is for static loading; 
• the consequence of failure - the frame for an office building can have a higher FS (lower 

design stress) than a temporary material storage building on a construction project; 
• cost - sometimes compromises are made by designers to be competitive in the 

marketplace. 
 
There may be other factors that influence the final selection of a factor of safety in a calculation. 
 
Often, the designers of the most common structural elements will not themselves choose the 
factor of safety to be applied to the yield or ultimate stress of a material.  Building codes and 
standards are authoritative resources for determining which FS to use when making a structural 
engineering calculation.  If the project or member being designed falls under the jurisdiction of a 
particular building code or standard, then the FS presented in that building code or standard  
must be the minimum used.   
 
A few of the codes and standards are: 

• American Institute of Steel Constructions (AISC) - buildings, bridges, and similar 
structures using steel 

• American Institute of Concrete (AIC) - concrete structures. 
• Concrete Reinforcing Steel Institute (CRSI) - steel reinforced concrete structures. 
• American Institute of Timber Construction -  timber structures. 
• American Society of Mechanical Engineers (ASME) - boilers, pressure vessels, etc. 
• Department of Defense - military standards, aerospace vehicles, etc. 
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• International Building Code (IBC) - for buildings involving public safety. 
• American National Standards Institute (ANSI) - products from many different areas. 

 
Often in the publications listed above, there is a discussion of factors of safety and how they are 
applied to various materials and loading conditions.  You may or may not use this FS 
information.  As a practical matter though, most of the publications simply list the allowable 
stress for a particular material and loading condition.  The application of the factor of safety and 
the related calculation is done and the result is listed in table format. 
  
Following are a couple of examples for axial loads.  The first table shows that the ultimate 
strength and the yield strength of a particular steel alloy changes as the size of the specimen 
changes.  As the size of the specimen gets bigger, the FS gets bigger and, therefore, the ultimate 
strength and the yield strength decrease.  The second table shows the different factors of safety 
for different loading conditions on a single material. 
 

Effect of Size on a Single Steel Alloy 
Size of specimen 

(inches) 
Ultimate strength 

(ksi) 
Yield strength 

(ksi) 
0.50 158 149 
1.00 140 135 
2.00 128 103 
4.00 117 87 

 
Working stresses are often given in table form in reference books.  In these cases, the factor of 
safety has already been applied to the ultimate strength or the yield strength, and different 
loading conditions have also already been taken into account.  For example, some of the 
properties of wood are shown below and on the next page. 
 
 

Properties of Wood 
Allowable Stress 

 
 
 

Type & grade 

 
 

Bending 
(psi) 

Tension 
parallel 
to grain 

(psi) 

Compression 
parallel to 

grain 
(psi) 

Compression 
perpendicular 

to grain 
(psi) 

 
Modulus of 

elasticity 
(psi) 

Douglas Fir - 2 to 4 in. 
thick, 6 inches and wider 
     No. 1 
     No. 2 

 
 

1,750 
1,450 

 
 

1,050 
850 

 
 

1,250 
1,000 

 
 

385 
385 

 
 

1,800,000 
1,700,000 

Working Stress  
for Load Types 

Type of loading Working stress 
Static 𝜎𝜎𝑦𝑦 2⁄  

Repeated 𝜎𝜎𝑢𝑢 8⁄  
Impact 𝜎𝜎𝑢𝑢 12⁄  
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Hemlock - 2 to 4 in. 
thick, 6 inches and wider 
     No. 1 
     No. 2 

 
 

1,400 
1,150 

 
 

825 
675 

 
 

1,000 
800 

 
 

245 
245 

 
 

1,500,000 
1,400,000 

Southern Pine - 2½ to 4 
in. thick, 6 inches and 
wider 
     No. 1 
     No. 2 

 
 
 

1,400 
1,000 

 
 
 

825 
575 

 
 
 

850 
550 

 
 
 

270 
230 

 
 
 

1,600,000 
1,300,000 

 
Example Problem 
A nominal 2 x 6 piece of wood has actual dimensions of 1½" by 5½".  Its cross sectional area is 
therefore 8.25𝑖𝑖𝑖𝑖2.  If the wood is Douglas Fir - No. 1, what is the maximum safe axial load that 
could be hung from the end of the 2 x 6? 
 

Solution 
The axial load on the 2 x 6 is tension parallel to the grain.  Using the 
Properties of Wood table above, the allowable stress for Douglas Fir - No. 
1 in tension parallel to the grain is 1,050 psi.   
 
The formula for maximum load is derived from the stress formula as 
follows: 

𝜎𝜎 =  
𝐹𝐹 
𝐴𝐴

  ⇨   𝐹𝐹 =  𝐴𝐴𝐴𝐴 
Therefore: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐹𝐹 = (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  
 

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 = (8.25 𝑖𝑖𝑖𝑖2) �1,050 𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖2� � =  8,662.5 𝑙𝑙𝑙𝑙 = 8,660 𝑙𝑙𝑙𝑙 = 8.66 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

 
Example Problem 
If the 2 x 6 in the above example was originally 10.000 feet long, how long would it be after the 
load was applied?  From the table above, the modulus of elasticity of the wood is 1,800,000 psi 
(1,800 ksi). 
 
Solution 
The total deformation of a material is given by the formula: 

𝛿𝛿 =  
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴

 
 
The total elongation of the 2 x 6 would then be: 
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𝛿𝛿 =  
(8.66 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)[(10.000 𝑓𝑓𝑓𝑓)(12 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓⁄ )]

(8.25 𝑖𝑖𝑖𝑖2)(1,800 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑖𝑖𝑖𝑖2⁄ ) = 0.06998 𝑖𝑖𝑖𝑖 = 0.070 𝑖𝑖𝑖𝑖 

And: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 𝑙𝑙 +  𝛿𝛿 = 120.000 𝑖𝑖𝑖𝑖 + 0.070 𝑖𝑖𝑖𝑖 =  120.070 𝑖𝑖𝑖𝑖 

 
 
 
EFFECT OF TEMPERATURE 
A change in temperature has an effect on materials.  For nearly all common structural materials, 
if the temperature is raised, the material will expand.  If the temperature is lowered, the material 
will contract.  Different materials react to changes in temperature differently.  All materials do 
not expand and contract at the same rates.  The rate at which a specific material will expand or 
contract is given by its coefficient of thermal expansion.   
 
The coefficient of thermal expansion, identified by the lower case Greek letter alpha (𝛼𝛼), is 
defined as: 

𝛼𝛼 =  
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)(𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  
𝛿𝛿

(𝑙𝑙)(∆𝑇𝑇) 

 
Stated slightly differently, alpha (𝛼𝛼) is a measure of change in length of a material per unit of 
length for a 1-degree change in temperature.  The units for α then would be: 
 

𝛼𝛼 =  
𝛿𝛿

(𝑙𝑙)(∆𝑇𝑇) =  
𝑖𝑖𝑖𝑖

(𝑖𝑖𝑖𝑖 ∙  °𝐹𝐹) =  
1

°𝐹𝐹
=  °𝐹𝐹−1 

 
The units for the coefficient of thermal expansion in the metric system would be ℃−1. 
 
The coefficients of thermal expansion have been determined for various materials and are listed 
in reference books just as other material properties are listed.  The coefficients of thermal 
expansion for a few materials are listed in the following table: 
 

Coefficient of Thermal Expansion, ( 𝛼𝛼 ) 
Material ℉−1 ℃−1 

Structural steel 6.5 x 10-6 11.7 x 10-6 
Concrete 6.0 x 10-6 10.8 x 10-6 

Wood (pine) 3.0 x 10-6 5.4 x 10-6 
Brass, C36000 11.4 x 10-6 20.5 x 10-6 

Copper, C14500 9.9 x 10-6 17.8 x 10-6 
Plate glass 5.0 x 10-6 9.0 x 10-6 
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The formula for the change in length of a member caused by a change in temperature can be 
derived as follows: 

𝛼𝛼 =  
𝛿𝛿

(𝑙𝑙)(∆𝑇𝑇)     ⇨     𝛿𝛿 =  𝛼𝛼 ∙ 𝑙𝑙 ∙ ∆𝑇𝑇 

 
The change in temperature, ∆𝑇𝑇, is given in either ℉ or ℃ depending on the units of the problem 
(English or metric) and the corresponding α must be used - either ℉−1, or ℃−1. 
 
Example Problem 
If a structural steel bar is 10.000 ft long at 0°F, how long would the bar be at 100°F? 

Solution 
First, solve for the total elongation of the bar due to the temperature change, and then add it to 
the original length.  From the table above, the coefficient of thermal expansion, α, for steel is 6.5 
x 10-6 °F-1, and the change in temperature is 100 degrees Fahrenheit. 
 

𝛿𝛿 =  𝛼𝛼 ∙ 𝑙𝑙 ∙ ∆𝑇𝑇 =  (6.5 𝑥𝑥 10−6 ℉−1)[(10 𝑓𝑓𝑓𝑓)(12 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓⁄ )](100℉) =  0.078 𝑖𝑖𝑖𝑖 
 
And the total length would be the original length plus the change in length due to temperature 
change: 
 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ + 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 𝑙𝑙 +  𝛿𝛿 = 120.000 + 0.078 = 120.078 𝑖𝑖𝑖𝑖 
 
If a member is allowed to expand or contract freely during a temperature change, as in the 
example above, no stresses are induced in the member.  The member has zero stress after the 
temperature change.  If, however, a member is constrained in some way, and the temperature 
changes, then internal stresses (either tensile or compressive) are induced into the member.  
These stresses can be calculated. 
 
Example Problem 
A 1 inch by 1 inch brass bar is 10.000 inches long.  It is constrained at both ends and not allowed 
to expand.  If the temperature is raised by 100°F, what is the internal stress developed in the bar?  
The coefficient of thermal expansion, α, for brass is 11.4 x 10-6 °F-1.  The modulus of elasticity, 
E, for brass is 16 x 106 psi. 
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Solution 
We will take two separate steps to solve this problem.  The first step is to assume that the bar is 
free to expand and calculate the total length of the bar after expansion.  At this point, there is no 
stress in the bar.  The second step is to then apply a force to the "expanded" bar to "compress" it 
back to the original size.  The force required to "shrink" the bar divided by the cross sectional 
area of the bar gives the internal compressive stress in the bar due to an increase in temperature 
with no expansion allowed. 
 
First, calculate the total length of the expanded bar. 
 

𝛿𝛿 =  𝛼𝛼 ∙ 𝑙𝑙 ∙ ∆𝑇𝑇 =  (11.4 𝑥𝑥 10−6 ℉−1)(10 𝑖𝑖𝑖𝑖)(100℉) =  0.0114 𝑖𝑖𝑖𝑖  
 
And the total length of the expanded bar is 10.0114 inches 

 
Second, calculate the force required to shorten the bar back to its original length and calculate 
the stress in the bar.  Actually, by rearranging the equation =  𝐹𝐹𝐹𝐹 𝐴𝐴𝐴𝐴⁄  , we can solve for stress 
directly as follows: 

𝛿𝛿 =  
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴

=  �
𝐹𝐹
𝐴𝐴

� �
𝑙𝑙
𝐸𝐸

� =  (𝜎𝜎) �
𝑙𝑙
𝐸𝐸

�    ⇨    𝜎𝜎 =  
𝛿𝛿𝛿𝛿
𝑙𝑙

 

 
Solving this equation yields the stress in the fixed bar due to an increase in temperature of 100°F.  
The length (l) used in this equation is the "expanded" length due to the temperature change.  

 

𝜎𝜎 =  
𝛿𝛿𝛿𝛿
𝑙𝑙

=  
(0.0114 𝑖𝑖𝑖𝑖)(16 𝑥𝑥 106 𝑝𝑝𝑝𝑝𝑝𝑝)

(10.0114 𝑖𝑖𝑖𝑖) = 18,219.2 𝑝𝑝𝑝𝑝𝑝𝑝 ⇨ 18,200 𝑝𝑝𝑝𝑝𝑝𝑝 = 18.2 𝑘𝑘𝑘𝑘𝑘𝑘  
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Notice in the solution to the problem that the cross sectional area of the bar was not used, nor 
was it needed, to determine the stress in the bar due to restricted movement during a change in 
temperature.   
 
Sometimes the amount of expansion or contraction that is allowed to occur during a temperature 
change is less than the member needs to expand or contract without induced stresses.  To solve 
for the stress in the material that is partially restrained after the temperature change, the same 
procedure is used as above except that when solving for the stress, the difference in length 
between the allowed and the "desired" length is used. 
 
Example Problem 
Use the data from the above problem.  Except now change the total restricted length to 10.007 
inches instead of 10.000 inches. 

 
Step one is to allow the bar to expand unrestricted and calculate the length of the bar after the 
temperature change.  The expanded unrestricted length (from the previous example above) is 
10.0114 inches. 
 
Step two in this problem is to allow the bar to only expand to 10.007 inches.  Which means that 
from its unrestricted expansion of 10.0114 inches, it must be compressed back to 10.007 inches.  
It must be compressed a total of 0.0044 inches (10.0114 inches minus 10.0070 inches). 

 
To compute the stress in the bar, the length to compress the bar is 0.0044 inches  Calculate the 
stress as follows: 
 

𝜎𝜎 =  
𝛿𝛿𝛿𝛿
𝑙𝑙

=  
(0.0044 𝑖𝑖𝑖𝑖)(16 𝑥𝑥 106 𝑝𝑝𝑝𝑝𝑝𝑝)

(10.0114 𝑖𝑖𝑖𝑖) = 7,032 𝑝𝑝𝑝𝑝𝑝𝑝 ⇨ 7,030 𝑝𝑝𝑝𝑝𝑝𝑝 = 7.03 𝑘𝑘𝑘𝑘𝑘𝑘  

 
This makes sense.  To raise the temperature of the bar 100°F and not allow it to expand causes an 
internal compressive stress of 18.2 ksi.  If the bar is allowed to expand a bit, the internal 
compressive stress is lower (in this case the stress is lowered to 7.03 ksi). 
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CROSS-SECTIONAL PROPERTIES 
So far we have considered axial loads (tension and compression) where the load is acting along 
the long axis of the member, and direct shear loads (bolt shear, where the load acts perpendicular 
to the long axis of the member), and punching shear.  In the axial load and direct shear 
calculations, the area of the cross section of the member is a key property of the cross section.  It 
turns out that there are other very important properties of the cross section of a loaded member 
that are necessary for additional study of strength of materials.  We will now learn how to 
determine one of these properties - the location of the centroid of an area. 
 
CENTROID 
The centroid of a cross section is the center of mass of that area.  The cross section of a 
structural member (typically a beam or column) is a plane area and is two dimensional.  The 
center of mass of a cross sectional area is a single point where the area could be balanced if it 
were supported only at that point.   
 
For simple shapes, the centroid of the area is easy to see and to locate.  Shown below are a circle, 
square, rectangle, and a triangle with their centroid shown.  If each area were carefully cut out of 
a piece of cardboard, the piece could be balanced on the tip of your finger if your finger was 
placed at the centroid - the point on the drawings below defined as "C". 
 

   
 
The location of the centroids above are almost intuitive, except maybe for the triangle.  The 
centroid of the triangle is at the intersection of the three lines, each drawn from a corner of the 
triangle to the mid-point of the opposite side.  A couple of rules present themselves for locating 
the centroid of an area.   
 

• If a shape has only one axis of symmetry, the centroid will lie somewhere on that axis. 
• If an area has two axis of symmetry, the centroid will lie at the intersection of the two 

axis. 
 
The following shapes demonstrate the above rules.  Each cross section below has two axis of 
symmetry, and, therefore, the centroid is located at the intersection of those two axis.   
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Often a structural member will have a cross section that is composed of two or more simple 
shapes.  It may have one axis of symmetry, but not two.  In that case, the centroid lies 
somewhere along the single axis of symmetry.  And the location of the other axis must be 
determined.    
 
NOTE:  Let's mention here that in structural engineering the two axis of a cross section are 
labeled the x-axis and the y- axis.  And they are perpendicular to each other.   
 
By applying a simple set of arithmetic calculations we can determine where along the 
symmetrical axis the centroid is located.  The procedure is called the method of composite areas. 
 
Method of Composite Areas 
For cross sections that do not have two axis of symmetry, the method of composite areas is 
used to locate the centroid of the area.  The method of composite areas is sometimes called the 
first moment of area.  Cross sections with only one axis of symmetry often contain two or more 
simple areas where their centroids are known (circle, square, etc.).  Also, many cross sections 
will have at least one axis of symmetry in real life conditions. 
 
The method of composite areas to find the centroid of an area consists of a few simple steps. 

1. Break the complex area into simple areas that have known centroid locations (usually 
circles, squares, rectangles and triangles).  These centroids are noted as "C" or (c.g.) on 
the following problem drawings. 
 

2. Choose a reference axis about which to sum the moments of the simple, smaller areas. 
 

3. Add the moments of the small areas about the reference axis.  The distance from the 
reference axis to the centroid of each small area is denoted as "y".  Therefore, the sum of 
the moments of the small areas (A1, A2, A3, etc.) becomes  A1y1 + A2y2 + A3y3 + etc.   A 
hole in the cross section, or a void space, would be a negative area. 
 

4. Find the distance from the reference axis to the centroidal axis (𝑦𝑦�) by dividing the sum of 
the moments by the total area of the cross section.  𝑦𝑦� =  A1y1 + A2y2 + A3y3 + etc.

A1 + A2 + A3 + etc.
 . 
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Example Problem 
Find the location of the centroid of the cross section shown below. 

 
Solution 
Step 1  Break the cross section into three simple shapes and identify them as 1, 2, and 3.  Locate 
the centroid (C), or center of gravity (c.g.), of each shape.  Note: the y-axis is the axis of 
symmetry, therefore the centroid of each shape lies on that axis.  The centroid of the entire shape 
lies on the y-axis as well. 
 
Step 2  Choose a location for the reference axis.  In this case, locate the reference axis at the base 
of the cross section.  Compute the distance from the reference axis to the centroid of each small 
area as shown in the drawing. 
 
Step 3  Compute the moment of each small area about the reference axis. 
 Area 1 ⇒ 𝐴𝐴1𝑦𝑦1 =  �1

2
 ∙  4"  ∙  3"� �7"� =  42 𝑖𝑖𝑖𝑖3  

 Area 2 ⇒ 𝐴𝐴2𝑦𝑦2 =  � 4"  ∙  4"�(4")        =  64 𝑖𝑖𝑖𝑖3 
 Area 3 ⇒ 𝐴𝐴3𝑦𝑦3 =  ( 2" ∙  6")(1")        =  12 𝑖𝑖𝑖𝑖3 
                                                                               ____ 
                                                                             118 𝑖𝑖𝑖𝑖3 
 
Step 4  Find 𝑦𝑦� (which is the distance from the reference axis to the centroid of the entire section). 
 
 Calculate the total area of the cross section = 6 in2 + 16 in2 + 12 in2 = 34 in2. 
 

𝑦𝑦� =
𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
=  

118𝑖𝑖𝑖𝑖3

34𝑖𝑖𝑖𝑖2 = 3.47" 
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The centroid of the cross section is located along, or on, 
the y-axis of symmetry (the vertical axis), and the x-axis 
is located 3.47 inches from the reference axis as shown 
on the drawing to the left.   
 
We'll work another example, this time putting our 
calculations in table format (easier to use), using the 
centroid of one of the smaller areas as the reference axis 
(simplifies one calculation), and inserting a hole in the 
cross section (to show a "negative area").  By choosing 
the reference axis as the axis of one of the simple shapes, 
we may also create a negative moment.  And, we'll also 
show the three simple shapes and their centroids distance 
to the reference axis on the problem drawing. 
 

 
Example Problem 
Find the location of the centroid of the cross section shown below.  Because the cross section is 
symmetric about the y-axis (the axis of symmetry), the centroid of the cross section lies 
somewhere along the y-axis. 
 

 
            Problem      Answer 
 
Solution 
Step 1  Break the cross section into three simple shapes 1, 2, and 3.  Locate each shapes centroid 

(C) (or center of gravity - c.g.). 
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Step 2 Locate the reference axis through the c.g. of small area 2.  Show the distance from the 
reference axis to the C of each small area.  Choose the up direction from the reference 
axis as negative and down from the reference line as positive. 

 
Step 3 and 4  Solve for 𝑦𝑦�  using a table format.  In the table below, the dimensions are left off for  

simplicity.  And the calculations are simple enough to do mentally.  For example, the area 
of small area 1 is 2" by 12" equals 24 in2.  Area 3 is a void, therefore its area is negative.  
And y for area 1 is negative because it is a dimension above the reference axis, which we 
chose as the negative direction. 

 
Area A y Ay 

1 24 -6 -144 
2 60 0 0 
3 -12 2.5 -30 

 Sum = 72   Sum = −174  
 

𝑦𝑦� =  
−174

72
=  −2.42" 

 
The negative sign simply means the x-axis is located above the reference axis.  The centroid of 
the cross section is located along, or on, the y-axis of symmetry and the x-axis is located 2.42 
inches above the reference axis.   
 
The location of the x-axis (center of gravity or centroid of the cross section) also makes sense 
intuitively.  By simply looking at the cross section before beginning the solution we can 
determine that the centroid will lie somewhere along the y-axis AND above the centroid of the 
middle small area - area 2.  We do this by first visualizing in our mind only the 6" x 10" area.  
The centroid of that area lies at its midpoint - 5 " from the top of the rectangle and 5" from the 
bottom of the rectangle.  Next, add the small triangular area - area 1 - to the top of the rectangle.  
This area moves the centroid up a bit.  Then take some area that is below the centroid of the 
rectangle, away from the rectangle.  Removing this area moves the centroid of the complete 
section slightly farther up.  The final location of the x-axis will be somewhere along the y-axis 
and slightly above the centroid of the small rectangular area.  In fact, it is 2.42 inches above the 
centroid of the rectangular area. 
 
In real life, the above calculation method of locating the center of gravity or centroid of a cross 
section is usually limited to applications where simple shapes are combined to create a member.  
For example (see below), creating a Tee cross section by nailing a 2 x 6 to the underside of a 2 x 
12 to create a 12 inch wide players bench for the sidelines of a high school football field.  Or 
perhaps creating a wooden beam window header composed of a 2 by 12 with 2 by 6's nailed to 
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the top and bottom to form a "c" section.  The 2 x 6's match the thickness of the exterior wall, 
and the space between the 2 x 6's can be filled with insulation. 

 
Also, in real life, especially if you are working with steel, the shapes commonly used in 
structural systems are not simple areas.  They may contain rounded corners, varying thicknesses 
of flanges, etc.  The location of the centroids of these commonly used shapes - which are often 
quite tedious to compute - are often listed in reference manuals such as the Manual of Steel 
Construction published by the AISC.   
 
Following are a couple of shapes found in the AISC Manual showing the listed dimension to the 
centroid of the cross section.  Note that the dimensions of the cross sections change from time to 
time in the manual because of changes in the manufacturing process, or for other reasons.  The 
different editions of the AISC Manual publish the current correct dimensions.  Also, sometimes, 
a section will be discontinued.  And will then be omitted from the following edition of the 
manual.   
 
Dimensions shown on the drawings of the cross sections below are from the AISC Manual, 6th 
Edition, Second Revised Printing, November 1, 1965.  The table below the drawings compares 
the 6th edition dimensions with those of the 8th edition of the AISC manual (1980). 

 
6th Edition y = 3.30" x = 1.05"; y = 3.05" x = 0.90" 
8th Edition y = 3.29" x = 1.05"; y = 3.05" x = 0.674" 
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6th Edition y = 10.64" y = 5.53" 
8th Edition y = 10.67" Not Shown in 8th Edition 

 
 
This is the end of this course. 
 
In the next course, What Every Engineer Should Know About Structures - Part D - Bending 
Strength of Materials, we will pick up where we left off here beginning with properties of an 
area known as the Moment of Inertia and the radius of gyration.  Then we will get into torsional 
stresses and deformations, bending stresses including shear and bending moment diagrams, and 
deflections in beams. 
 
The next course will be available soon. 
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