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1.0 Course Overview 
Many engineers deal with the analysis and design of systems that are in motion.  Determining the 
behavior of systems in motion requires knowledge of engineering dynamics, which is a branch of 
engineering mechanics dealing with the motion of bodies under the action of forces.  It is critical 
to understand forces and how they change during motion to design parts for maximum forces. 

This course focuses on the most essential concepts of engineering dynamics and will outline a 
systematic approach to solving dynamics problems.  Following the step-by-step process 
presented in this course will help you to quickly determine the appropriate equations to use for 
problems relating to engineering dynamics.  The key is being able to determine what type of 
problem you are trying to solve, then you can determine which equation to use.  The basic idea 
of this procedure is outlined in Section 2.6. 

This complete course is divided into two parts: part 1 focuses on kinematics of particles and rigid 
bodies and part 2 focuses on kinetics of particles and rigid bodies.  The course is intended as a 
review of dynamics, so a previous knowledge of the subject is helpful.  The course, however, can 
be treated as a fundamental introduction to the topics. 

2.0 Basic Introductory Concepts 

2.1 Introduction 
Before starting with the solution procedures for specific problem categories, it is critical to 
understand some basic introductory concepts.  This section will define some basic terminology 
and classify the different types of energy along with the appropriate equations for each type.  
You must understand the differences between kinematics and kinetics, as well as the differences 
between rigid bodies and particles.  Therefore, this introductory section will also define and 
describe those terms. 

 

2.1.1 Vectors vs. Scalars 

Vector quantities have both magnitude and direction.  Scalar quantities only have magnitude.  
Throughout this course, vector quantities will be designated with an arrow above the variable 
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(such as velocity v ).  Keep in mind that different sources use different notation for vectors.  Bold 
text, for example, is also a common way to denote a vector quantity.  Table 1 gives examples of 
common vectors and scalars. 

 

Table 1 Examples of vectors and scalars 
 Definition Examples 

Vector Magnitude and direction Momentum, velocity, acceleration, 
force 

Scalar Magnitude only Potential energy, kinetic energy, 
time 

 

It is assumed that the reader has a familiarity with concepts of vector operations such as vector 
addition and unit vectors.  Brief summaries of these operations will be provided where necessary, 
but readers are encouraged to review these topics in more detail if required.   

 

2.2 Planar Motion 
Dynamic motion can occur in two or three dimensions.  Two-dimensional motion occurs in a 
single plane and is very common in engineering applications.  This course will only focus on 
two-dimensional planar motion.  Concepts of three-dimensional motion become more complex 
in the vector operations, but the basic principles are the same as planar motion. 

 

2.3 Types of Energy 
A lot of dynamics problems focus on energy and how energy changes form during the motion.  
Two common methods utilizing energy are Work and Energy and Conservation of Energy, and 
both of these will be discussed more in part 2 of this course.  You need to understand the 
different forms of energy to be able to solve many engineering dynamics problems. 
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2.3.1 Potential Energy 

Potential energy is energy at rest.  There are a couple of different forms of potential energy that 
are common in dynamics problems: gravitational potential energy and elastic potential energy.  
The first form is gravitational potential energy, which is the stored energy due to an elevated 
position (water stored in an elevated reservoir has gravitational potential energy).  Gravitational 
potential energy for a mass (m) at a height (h) above the datum is shown in Equation 1. 

 

Gravitational Potential 
Energy 

mghV =  Equation 1 

 

Note that the gravitational potential energy does not depend on the path taken by the object, but 
only on its elevation above a user defined datum. 

Elastic potential energy is a stored energy of a spring or other elastic member.  The potential 
energy of a stretched spring with constant (k) deformed a distance (x) from its equilibrium 
position is given in Equation 2. 

 

Elastic Potential Energy 2

2
1 kxVe =  Equation 2 

 

2.3.2 Kinetic Energy 

Kinetic energy is energy related to motion.  The general equation for kinetic energy for a mass 
(m) moving at a velocity (v) is given in Equation 3. 

 

 2

2
1 mvT =  Equation 3 
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2.4 Kinematics and Kinetics 
One very important area in understanding dynamics is the distinction between kinematics and 
kinetics.  The determining factor here is force.  Kinematics problems concentrate on motion 
without any regard to the force required for that motion.  In other words, kinematics focusses on 
the geometry of motion.  Part 1 of this course focuses on problems relating to kinematics. 

Kinetics problems are focused on what force is required to cause a motion.  It is important to 
have a good understanding of kinematics before moving into topics on kinetics.  Problems in 
kinetics are covered in detail in part 2 of this course.  

 

2.5 Particles vs. Rigid Bodies 
It is also very important to understand the difference between particles and rigid bodies.  It is 
common to hear the word particle and automatically assume something small.  However, that is 
not necessarily the case.  In dynamics problems, it is not uncommon to have something like a car 
or train be a particle.  The defining difference between particles and rigid bodies is rotation.  If 
the object is not rotating about its own centroid it can be treated as a particle because the object’s 
rotational properties do not matter.  If the object is rotating about its own centroid, the rotational 
properties are important and it is considered a rigid body. 

 

2.6 Determination of the Problem Category 
When you need to solve a dynamics problem the first step is to determine what type of problem 
you are trying to solve.  Dynamics problems will always fall into one of two main groups: 
particle problems and rigid body problems.  Each of the two main groups will then be subdivided 
into either kinematics problems or kinetics problems.  Therefore, any problem you work in 
dynamics will fall into one of four major categories: 

1. Particle kinematics (See Section 3.0) 
2. Particle kinetics (See part 2 of this course) 
3. Rigid body kinematics (See Section 4.0) 
4. Rigid body kinetics (See Part 2 of this course) 
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The first step to solving a dynamics problem is to quickly determine which category the problem 
belongs in.  Figure 1 illustrates the thought process.  First, ask yourself if the system contains 
objects that are particles or rigid bodies.  If rotational properties are not important, they are likely 
particles.  Once you determine if you are working with particles or rigid bodies, determine if the 
question is asking about geometry of motion (kinematics) or forces (kinetics).  After you know 
the proper problem category, you can go to that category section in this course and determine the 
proper steps for the solution process. 

 

 

Figure 1 Categories of engineering dynamics problems 

 

3.0 Kinematics of Particles 

3.1 Introduction 
The first group of problems we will examine is the kinematics of particles group, which is the 
easiest of all the groups.  Motion of a particle can be described in many different ways, but the 
two main types of motion for particles will be rectilinear motion and curvilinear motion.  
Rectilinear motion, which will be covered in Section 3.2, is motion of a particle moving along a 
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straight line.  Curvilinear motion, which is covered in Section 3.3, is motion along a curved path.  
Both types of motion are illustrated in Figure 2. 

 

 

Figure 2 (a) Rectilinear motion and (b) Curvilinear motion 

 

3.2 Rectilinear Motion 
Rectilinear motion, as illustrated in Figure 2 (a), is motion of a particle along a straight line.  
When studying rectilinear motion of particles, it is common to determine the particle’s position 
at various times during its motion.  Velocity is the time rate of change of position and can be 
determined by dividing the change in position by the change in time.  Instantaneous linear 
velocity is given by Equation 4, where s is position and t is time. 

 

Linear Velocity 
dt
dsv =  Equation 4 

 

The acceleration of a particle is determined by looking at how the velocity changes over time.  
The instantaneous acceleration is the rate of change of velocity with respect to time.  As shown 
in Equation 5, acceleration is the first time derivative of velocity and the second time derivative 
of position. 

http://www.suncam.com/


 
Review of Engineering Dynamics: Part 1 

A SunCam online continuing education course 

 

 

www.SunCam.com  Copyright 2017 James Doane Page 10 of 45 

 

 

Linear Acceleration 
dt
dv

dt
sda == 2

2

 Equation 5 

 

See Section 5.0 for a brief review of calculus if you need help understanding time derivatives. 

Example 1 

A particle moves along a straight line, and the motion of the particle is 
defined by the equation below ( x  and t  are given in meters and seconds, 
respectively).  Determine the velocity and acceleration of the particle at a 
time of 3 seconds. 

5423)( 34 −+−= ttttx  

Solution: 

The velocity and acceleration equations are determined from differentiation. 





+−==

s
mtt

dt
dxtv 4612)( 23  





−== 2

2 1236)(
s
mtt

dt
dvta  

The velocity and acceleration of the particle at a time of 3 seconds is 
determined by substituting 3 in for time in the above equations. 

( ) ( )
s
mv 274436312 23 =+−=  

( ) ( ) 2
2 288312336

s
ma =−=  
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3.2.1 Constant Acceleration Motion 

If acceleration is constant, the motion is classified as uniformly accelerated rectilinear motion.  
Many applications, such as free fall, are constant acceleration problems.  For a particle in 
rectilinear motion with constant acceleration, the velocity at any time t will be given by Equation 
6 and its position at any time t will be given by Equation 7. 

 

Velocity atvv += 0  Equation 6 

 

Position 2
00 2

1 attvxx ++=  Equation 7 

 

Another useful equation to calculate distance, velocity, or acceleration without knowing anything 
about time is given in Equation 8. 

 

 ( )0
2
0

2 2 xxavv −+=  Equation 8 

 

Though the derivation of these equations has not been provided, the process is relatively 
straightforward and uses basic rules of calculus.  The important thing to remember is that the 
equations above are only valid if the acceleration is constant. 
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Example 2 

A particle moves along a straight line.  The acceleration of the particle is 
shown in the graph below and the initial velocity is 6 ft/s.  What is the particle 
velocity during the zero-acceleration period?  What is the particle velocity at 
14 seconds? 

 
Solution: 

This problem can be solved using equations or by graphical integration.  The 
first part will be solved using the equations.  From Equation 6, the velocity 
equation for the first four seconds will be 

atvv += 0  

( )tv 36 −+=  

This will result in a straight-line plot starting at 6 and having a slope of -3.  At 
time equals four seconds 

( )( )
s
ftv 6436 −=−+=  

The plot below shows the velocity, which will equal -6 ft/s at a time of four 
seconds.  The velocity will remain constant during the zero-acceleration 
period. 
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The acceleration becomes 2 ft/s2 at a time of 8 seconds, and it remains 
constant until 14 seconds.  Using graphical integration, the change in velocity 
will equal the area under the curve.  The velocity at 14 seconds will be 

( )
s
ftss

s
ft

s
ftv s 681426 214 =−+−=  

 

3.2.1.1 Free Fall 
Free fall is a common example of a constant acceleration problem.  If an object is in free fall, the 
constant acceleration is due to gravity. 

 

Example 3 

An object is dropped from a distance of 7 meters above the ground.  How 
long does it take to fall? 

Solution: 

This is a constant acceleration problem with acceleration being 9.8 m/s2 

downward (acceleration of gravity is 
22 sec

2.3281.9 ft
s
mg == ).  Position is 

given by Equation 7. 
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2
00 2

1 attvxx ++=  

 

 

The initial position can be treated as zero, and 
the initial velocity is zero 

2

2
1 atx =  

Rearrange the equation to solve for time 

( ) s
s

m
m

a
xt 19.1

81.9
722

2

===  

The problem could also be solved using the ground as the datum. 

 

2
00 2

1 attvxx ++=  

2
281.9

2
107 t

s
mmx 





−++=  

( ) s
s

m
m

a
xt 19.1

81.9
722

2

===  

 

3.2.2 Acceleration as a Function of Time 

A more general approach is to have the acceleration of the particle as a function of time. 

 

 ( )tfa =  Equation 9 
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The constant acceleration motion discussed in Section 3.2.1 is a special case of Equation 9.  
Velocity and position are determined through integration. 

 

 ( )∫+=
t

dttfvv
0

0  Equation 10 

 

 ∫+=
t

vdtxx
0

0  Equation 11 

 

Again, refer to Section 5.0 for some general review of calculus if required.  More specifically, 
Section 5.2 covers general rules of integration required to solve Equation 10 and Equation 11. 

 

Example 4 

A particle moving along a straight line has acceleration based on the function 
below (units of in/s2).  The initial position is zero inches and the initial 
velocity is 4 in/s.  What is the function for velocity and position of this 
particle? 

203)( −= tta  

Solution: 

The velocity function is found through integration. 

∫ −+=
t

dtttv
0

2034)(  
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



−+=

s
intttv 20

2
34)( 2  

The position function if found by integrating the velocity function. 

∫+=
t

vdtxtx
0

0)(  

∫ +−=
t

dttttx
0

2 420
2
3)(  

[ ]inttttx 410
2
1)( 23 +−=  

 

3.3 Curvilinear Motion 

3.3.1 Introduction 

Curvilinear motion, as illustrated in Figure 2 (b), is motion of a particle along a curved path.  
Referring to the figure, the average velocity would be tr ∆∆ / .  The general form of the velocity 
vector is determined by taking the limit as the time interval approaches zero, which gives the 
velocity shown in Equation 12. 

 

 r
dt
rdv 



==  Equation 12 

 

Similarly, the acceleration is found by the derivative of velocity with respect to time. 

 

 v
dt
vda 



==  Equation 13 
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There are three coordinate systems commonly used for problems associated with curvilinear 
motion: rectangular coordinates, normal and tangential coordinates, and polar coordinates.  The 
coordinate system best suited for a problem will depend on the type of motion. 

 

3.3.2 Rectangular Coordinates 

The first coordinate system we will discuss for curvilinear motion will be rectangular 
coordinates.  Rectangular coordinates will use unit vectors, as shown in Figure 3.   

 

 

Figure 3 Rectangular coordinates 

 

A unit vector is a vector that has a length of one unit.  The unit vector along the x-axis is î  and 
the unit vector along the y-axis is ĵ .  A unit vector k̂  also exists along the z-axis, though not 
shown in the figure.  The position of a point P can be defined by a position vector r  and can be 
expressed in terms of the unit vectors. 

 

Position jyixr ˆˆ +=
  Equation 14 
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Differentiating the position vector with respect to time will give velocity 

 

Velocity jyixrv ˆˆ 
+==  Equation 15 

 

A second time derivate will give acceleration 

 

Acceleration jyixra ˆˆ 
+==  Equation 16 

 

Example 5 

The position of a particle is defined by ( ) ( ) jttitr ˆ12ˆ3 42 +−+=
 .  Determine 

the equations for particle velocity and acceleration. 

 

Solution: 

The particle velocity is determined using Equation 15. 

( ) ( ) jtitjyixv ˆ18ˆ6ˆˆ 3 −+=+= 


 

The particle acceleration is determined using Equation 16. 

( ) ( ) jtijyixa ˆ24ˆ6ˆˆ 2+=+= 

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3.3.2.1 Projectile Motion 
Projectile motion is a common type of motion in the kinematics of particles group that utilizes 
rectangular coordinates.  In projectile motion, the motion of the particle can be broken into the 
two components: horizontal and vertical motion.  The horizontal motion will be constant velocity 
(if we assume no air resistance) and the vertical motion will be constant acceleration 
(acceleration due to gravity).  The equations for the horizontal motion are given in Equation 17, 
and the equations for the vertical motion are shown in Equation 18.  For all equations, the 
subscript 0 indicates initial conditions (at time = 0). 

 

Horizontal Motion ( )
( ) tvxx

vv
a

x

xx

x

00

0

0

+=

=
=

 Equation 17 

Vertical Motion 
( )

( ) 2
0

0

2
1 gttvyy

gtvv
ga

oy

yy

y

−+=

−=

−=

 
Equation 18 

 

3.3.3 Normal and Tangential Coordinates 

Another method of defining curvilinear motion is by using tangential and normal coordinates.  A 
common application of normal and tangential coordinates would be motion along a circular path.  
Figure 4 shows a particle P moving along a curved path.  At the location of the particle, point C 
represents the center of curvature of the path.  The velocity of the particle, as shown in Figure 4 
(a), will be tangent to the path in the direction of motion. 
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Figure 4 Normal and tangential coordinates 

 

Acceleration will have two components, as shown in Figure 4 (b).  The component along the 
tangential axis 

 

Tangential Acceleration 
dt
dvat =  Equation 19 

 

and the component along the normal axis, where ρ  is the radius of curvature of the path. 

 

Normal Acceleration 
ρ

2van =  Equation 20 

 

The tangential acceleration will always be tangent to the path, but its direction will depend on 
how the velocity is changing with time.  It will point in the direction of motion if the particle is 
accelerating, point in the direction opposite the motion if the particle is decelerating, or it will be 
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zero for constant velocity.  The normal acceleration will always point toward the center of 
rotation (point C). 

 

Example 6 

A particle is moving along a circular path at a constant speed of 70 ft/s.  The 
radius of the circular path is 1500 feet.  The particle decelerates at a constant 
rate to come to a complete stop in 23 seconds.  What is the magnitude of total 
acceleration at the point when the deceleration begins? 

 

Solution: 

Because the deceleration occurs at a constant rate, the tangential acceleration 
is determined by the average rate of deceleration. 

( )
204.3

23

700

s
ft

s
s

ft

t
vv

dt
dva if

t −=
−

=
∆
−

==  

The normal acceleration is based on the velocity and the radius of curvature.  
Because the question is asking for the total acceleration at the point when the 
deceleration begins, the velocity will be 70 ft/s. 

2

2

2

27.3
1500

70

s
ft

ft
s

ft
van =








==
ρ

 

http://www.suncam.com/


 
Review of Engineering Dynamics: Part 1 

A SunCam online continuing education course 

 

 

www.SunCam.com  Copyright 2017 James Doane Page 22 of 45 

 

 

The magnitude of the total 
acceleration is 

22
nt aaa +=  

( ) 22 27.304.3 +−=a  

246.4
s
fta =  

 

3.3.4 Polar Coordinates 

The last coordinate system we will cover for curvilinear motion is the polar coordinate system.  
The position of the particle will be defined by its radial dimension r  and its angular dimension 
θ  as shown in Figure 5.  Unit vectors rê and θê  are defined as shown. 

 

 

Figure 5 Polar coordinates 
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Without proof, the velocity vector is defined as 

 

 θθ ererv r ˆˆ 
 +=  Equation 21 

 

and the acceleration vector is defined as 

 

 ( ) ( ) θθθθ errerra r ˆ2ˆ 


++−=  Equation 22 

 

Example 7 

A hydraulic cylinder rotates about point O.  Rotation of the cylinder is 
defined by t3.0=θ , where θ is in radians and time is in seconds.  As the 
cylinder rotates, the rod extends to give 22.03.124 ttr ++= , where r is in 
inches.  Determine the magnitude of the velocity and acceleration of point P 
at a time of 2 seconds. 
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Solution: 

We need to determine the time derivatives of )(tθ  and )(tr . 

t3.0=θ  

3.0=θ  

0=θ  

22.03.124 ttr ++=  

tr 4.03.1 +=  

4.0=r  

These equations can now be used to determine velocity  

( ) ( )( ) θθθ ettetererv rr ˆ3.02.03.124ˆ4.03.1ˆˆ 2++++=+= 
  

and acceleration equations for point P. 

( ) ( ) θθθθ errerra r ˆ2ˆ 


++−=  

( )( )( ) ( )( )( ) θetetta r ˆ3.04.03.12ˆ3.02.03.1244.0 2 ++++−=
  

The velocity and acceleration expressions can now be evaluated at a time of 2 
seconds. 

( )( ) ( ) ( )( )( ) θθ eeeev rr ˆ24.9ˆ1.2ˆ3.022.023.124ˆ24.03.1 2 +=++++=  

( ) ( )( )( )( ) ( )( )( )( ) θθ eeeea rr ˆ26.1ˆ82.7ˆ3.024.03.12ˆ3.022.023.1244.0 2 +−=++++−=
  

The magnitudes can be determined using 

( ) ( )
s
inv 48.924.91.2 22 =+=  

( ) ( ) 2
22 92.726.182.7

s
ina =+−=  
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4.0 Kinematics of Rigid Bodies 

4.1 Introduction 
Next, we move into the category of problems relating to kinematics of rigid bodies.  Planar 
motion of a rigid body will fall into one of three categories: translation, pure rotation, or general 
plane motion. 

 

4.2 Translation 
In translational motion, any line segment on the rigid body will remain in the same orientation 
throughout the entire motion.  Translation is further subdivided into rectilinear translation and 
curvilinear translation.  In rectilinear motion, all points on the rigid body move along straight 
lines.  In curvilinear translation, all points on the rigid body move along congruent curved paths.  
Both are illustrated in Figure 6 using a pallet moving along a monorail conveyor system.  In both 
examples, the pallet remains parallel to the ground (does not rotate). 

 

 

Figure 6 (a) Rectilinear translation (b) Curvilinear translation (Doane, 2015) 
[reused with permission] 

 

Figure 6 (a) shows the pallet moving along a straight line.  The trajectory of two points shown 
will be straight lines, which is rectilinear translation.  In Figure 6 (b) the pallet is moving along a 
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curved portion of the monorail system, but the pallet remains in a level position.  The trajectory 
of the two points will now be curved paths while the pallet remains parallel to the floor, which is 
curvilinear translation. 

 

4.3 Rotation about a Fixed Axis 
The next type of motion to consider is rotation about a fixed axis, which is sometimes referred to 
as pure rotation.  A point on a body in pure rotation will have a circular trajectory.  Multiple 
points on a body in pure rotation will have trajectories making concentric circles centered about 
the fixed rotation point.  Gears, as illustrated in Figure 7, are a common engineering example of 
pure rotation.  Each gear in the system rotates on a fixed shaft. 

 

 

Figure 7 System of gears in pure rotation (Doane, 2015) [reused with 
permission] 

 

4.3.1 Velocity 

If the particle is moving in a curved path, the velocity is expressed as the change in angular 
position divided by the change in time.  Instantaneous angular velocity (or rotational velocity) is 
time rate of change of angular displacement, as expressed in Equation 23.  For angular velocity, 
θ is the angular position and t is time. 
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Angular Velocity 
dt
dθω =  Equation 23 

 

 

 

Figure 8 Velocity for fixed axis rotation (Doane, 2015) [reused with permission] 

 

Tangential velocity and rotational velocity are related as shown in Figure 8.  The instantaneous 
linear velocity of a point on a rotating body will be proportional to the distance of that point from 
the center of rotation.  The velocity of point A is defined by the cross product shown in Equation 
24. 

 

 rv 
×=ω  Equation 24 

 

In planar motion the velocity can be expressed in the scalar form shown in Equation 25. 

 

 ωrv =  Equation 25 
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4.3.2 Acceleration 

Angular acceleration is used if the motion occurs on a curved path, and the equation for angular 
acceleration is shown in Equation 26. 

 

Angular Acceleration 
dt
d

dt
d θθα == 2

2

 Equation 26 

 

 

 

Figure 9 Acceleration for fixed axis rotation (Doane, 2015) [reused with 
permission] 

 

Acceleration is positive if velocity is increasing and negative if velocity is decreasing 
(deceleration).  Velocity and acceleration are both vector quantities, so they both have magnitude 
and direction. 

The absolute accelerations for pure rotation can be determined from differentiation of the 
velocity terms.  The direction of the acceleration vector is more complicated than that of 
velocity.  Acceleration is typically separated into two components: tangential and normal.  As 
illustrated in Figure 9, the rotational speed of the body is ω  and the rotational acceleration is α .  
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With the position vector r  being the vector from point O to point A, the accelerations are 
determined from the following cross products. 

 

 ( )ra
ra

n

t




××=
×=
ωω

α
 Equation 27 

 

For planar motion the accelerations can also be represented in scalar form.  The rotational 

velocity and acceleration will always be in the k̂±  direction, counterclockwise rotation being 
positive.  The magnitude of the tangential and normal accelerations will be 

 

 2ω

α

ra
ra

n

t

=

=
 Equation 28 

 

and their directions can be determined by inspection. 

 

Example 8 

The right triangular plate shown in figure 2.7 is in pure rotation about point O 
and is decelerating at a rate of 3 rad/sec.  At the instant shown it has a rotation 
speed of 5 rad/sec clockwise.  Determine the velocity, tangential acceleration, 
and normal acceleration vectors for points A and B. 
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Solution: 

The rotational speed and acceleration can both be expressed as vectors.  The 
rotation speed is clockwise, which is a negative vector.  The deceleration 
indicates the acceleration direction is counterclockwise, which is positive. 

2/ˆ3/ˆ5 sradksradk =−= αω


 

 

We will start with point A.  The position 
vector shown will be 

( ) ( ) jirA
ˆ160sin4ˆ160cos4 +=

  

jirA
ˆ3681.1ˆ7588.3 +−=

  

The velocity of point A will be 

rv 
×=ω  

( )jikrvA
ˆ3681.1ˆ7588.3ˆ5 +−×−=×=  ω  

jivA
ˆ7940.18ˆ8405.6 +=


 

The acceleration of point A will be 

( ) ( )jikra tA
ˆ3681.1ˆ7588.3ˆ3 +−×=×=

 α  
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( ) ]/[ˆ3.11ˆ1.4 2sinjia tA −−=
  

( ) ( ) ( )( )jikkra nA
ˆ3681.1ˆ7588.3ˆ5ˆ5 +−×−×−=××=  ωω  

( ) ( )jika nA
ˆ7940.18ˆ8405.6ˆ5 +×−=


 

( ) ]/[ˆ2.34ˆ0.94 2sinjia nA −=
  

Next, we move to point B.  The angles shown in the figure below need to be 
determined. 

 

°=⇒= 87.36
4
3tan θθ  

°=°−°=−°= 13.12387.36160160 θφ  
Length OB is 5” because the triangle is a 3-4-5 
triangle.  Position vector for point B is 

( ) ( ) jirB
ˆ13.123sin5ˆ13.123cos5 +=

  

jirB
ˆ1872.4ˆ7327.2 +−=

  

The velocity of point B will be 

( )jikrvB
ˆ1872.4ˆ7327.2ˆ5 +−×−=×=  ω  

[ ]sinjivB /ˆ6635.13ˆ9360.20 +=


 

Cross products are used to get acceleration values for point B. 

( ) ( )jikra tB
ˆ1872.4ˆ7327.2ˆ3 +−×=×=

 α  

( ) ]/[ˆ2.8ˆ6.12 2sinjia tB −−=
  

( ) ( ) ( )( )jikkra nB
ˆ1872.4ˆ7327.2ˆ5ˆ5 +−×−×−=××=  ωω  

( ) ( )jika nB
ˆ6635.13ˆ9360.20ˆ5 +×−=


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( ) ]/[ˆ7.104ˆ3.68 2sinjia nB −=
  

 

4.4 General Plane Motion 
Planar motion that is a combination of translation and pure rotation is known as general plane 
motion.  Consider the slider-crank mechanism shown in Figure 10.  The coupler (link 3) will 
move in general plane motion.  The general plane motion can be broken down into translation 
plus rotation, as shown in Figure 10 (b). 

 

 

Figure 10 General plane motion (Doane, 2015) [reused with permission] 
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4.4.1 Velocity 

4.4.1.1 Velocity Difference and Relative Velocity 
Velocity analysis becomes more complex with general plane motion because the rotation does 
not occur about a fixed pivot point.  Figure 11 (a) shows a link pivoting about point B.  Unlike 
pure rotation, point B is now moving on a slide.  Motion described relative to another moving 
point is called relative motion. 

 

 

Figure 11 (a) Velocity difference (b) Vector polygon (c) Representation of the 
velocity of point A with respect to point B (Doane, 2015) [reused with 
permission] 

 

As represented by the vector polygon in Figure 11 (b), the absolute velocity of point A ( Av ) now 
is determined using velocity difference. 

 

 BABA vvv /


+=  Equation 29 

 

As shown in Figure 11 (c), the velocity of point A with respect to point B ( )BAv /
  is determined by 

treating point B as a fixed pivot and determining the velocity of point A as if it were in pure 
rotation. 
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 BAABBA rv //


×=ω  Equation 30 

 

Substituting Equation 30 into Equation 29 gives 

 

 BAABBA rvv /


×+= ω  Equation 31 

 

The vector equation can be split into two scalar equations, which can be solved for the two 
unknowns Av  and ABω

 .  An example of using velocity difference will be presented in the 
application problem (Example 10) in Section 4.5. 

 

4.4.1.2 Instant Center of Rotation 
A rigid body in plane motion can always be thought of as being in pure rotation about some fixed 
instantaneous center of rotation.  The location of the instant center will change for a body in 
general plane motion, and note that its position will not necessarily be located on the actual rigid 
body.  The velocity of the instant center will be zero; however, the acceleration will generally not 
be zero.  Therefore, the instant center of rotation is only used in velocity analysis. 

The instant center of rotation can be found on any rigid body in general plane motion if the 
velocity directions of two points are known.  Consider the rigid body in Figure 12 (a) where the 
direction of the velocities at points A and B are known.  The velocity vector is always 
perpendicular to the radial line to the center of rotation.  Therefore, if a line is drawn 
perpendicular to each known velocity vector, the intersection of those two lines will be the 
instant center of rotation (labeled IC on the figure).  The direction of velocity vectors at any other 
point on the rigid body can then be determined.  Figure 12 (b) shows lines drawn from the instant 
center to points C and D.  The velocity at each point must be perpendicular to those lines.  The 
directions of the velocity must be consistent with the rotational direction of the rigid body and 
the magnitudes can be determined based on the distance of that point to the instant center. 
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Figure 12 (a) Locating the instant center of rotation (b) Determining velocity of 
points using the instant center (Doane, 2015) [reused with permission] 

 

Example 9 

Link ABC shown is connected to two blocks.  At the instant shown block B 
has a downward velocity of 1.2 m/s.  Determine the angular velocity of the 
rod. 

 
Solution: 
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The velocity of point B is downward and the velocity of point A will be 
constrained to a horizontal direction.  The intersection of lines drawn 
perpendicular to the velocities will be the instant center. 

 

The distance from B to the instant center is 
required to determine the angular velocity of the 
rod. 

md
m

d
B

B 126.0
1651.0

40cos =⇒=  

Because the rod can be considered in pure 
rotation about the instant center the angular 
velocity of the bar can now be determined from 
the known velocity and radial distance from the 
instant center. 

[ ]ccw
s

rad
m

s
m

d
v

B

B 5.9
126.0

2.1
===ω  

 

4.4.2 Acceleration 

Acceleration of a point relative to another moving point will be relative acceleration. 

 

 BABA aaa /


+=  Equation 32 

 

Unlike velocity analysis, the relative acceleration term will have two components.  The term 

BAa /


 will be rotational so it will have normal and tangential components, which were given 
earlier for rotation about a fixed point.  Substituting the normal and tangential acceleration terms 
give 
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 ntBA aaaa 
++=   

 ( )BAABABBAABBA rraa //


××+×+= ωωα  Equation 33 

 

An example of calculating acceleration will be presented in the application problem (Example 
10) in Section 4.5. 

 

4.5 Applications for Rigid Body Kinematics 
There are many applications of rigid body kinematics in engineering.  One common application 
in mechanical engineering would be machine dynamics.  An example will be provided for a 
slider-crank mechanism.  The mechanism is a nice example because it illustrates all types of 
rigid body motion.  Figure 13 shows a slider-crank mechanism, which will be used in the 
Example 10.  The crank (link OA) is in pure rotation about the fixed-point O.  The piston is 
constrained to only move in the vertical direction, so it is in pure linear translation.  The 
connecting rod (link AB) is in general plane motion. 

 

 

Figure 13 Component motions in a slider-crank mechanism 
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Example 10 

The figure shows a slider-crank mechanism.  The crank (link OA) rotates at a constant 
speed of 1200 rpm clockwise.  For the position shown determine the velocity and 
acceleration of the piston (point B). 

 
Solution: 

We will start with the crank (link OA), which is in pure rotation.  The rotation speed 
needs to be converted to radians per second. 

s
rad

srev
radrev 7.125

60
min12

min
12002 =














=
πω  
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The velocity of point A can be determined. 

( ) ( )( )jikrv AA
ˆ33sin4ˆ33cos4ˆ7.1252 −+−×−=×=

 ω  

]/[ˆ69.421ˆ85.273 sinjivA −−=
  

The tangential acceleration of point A will be zero because the rotational acceleration is 
zero (rotates at a constant speed).  The normal component will not be zero. 

 

( )AA ra 
××= 22 ωω  

( ) ( )( )( )jikkaA
ˆ33sin4ˆ33cos4ˆ7.125ˆ7.125 −+−×−×−=


 

( )( )jikkaA
ˆ1786.2ˆ3547.3ˆ7.125ˆ7.125 −+×−×−=


 

( )jikaA
ˆ6858.421ˆ85.273ˆ7.125 −−×−=


 

]/[ˆ34423ˆ53006 2sinjiaA +−=


 

Next, we move on to the connecting rod (link AB).  The angular position of the 
connecting rod can be determined using law of sines.   

 

°=⇒= 57.15
sin

4
123sin
5.12 α

α
 

The velocity of point B is determined using the 
relative velocity equation. 

ABAABAB rvvvv /3/


×+=+= ω  

As shown, the direction of the rotational velocity of 
link 3 is currently unknown.  Therefore, the 
direction of the relative velocity vector is unknown 
(though it lies on a line perpendicular to line AB). 

Assuming a counterclockwise rotational velocity gives 

( ) ( )( )jikjivB
ˆ57.15cos5.12ˆ57.15sin5.12ˆˆ69.421ˆ85.273 3 +−×+−−= ω

 

http://www.suncam.com/


 
Review of Engineering Dynamics: Part 1 

A SunCam online continuing education course 

 

 

www.SunCam.com  Copyright 2017 James Doane Page 40 of 45 

 

jijivB
ˆ36.3ˆ04.12ˆ69.421ˆ85.273 33 ωω −−−−=


 

The vector equation can be separated into two scalar equations.  Taking the x-direction 
equation (note that the velocity of B is vertical so its x-component will be zero) 

srad /74.2204.1285.2730 33 −=⇒−−= ωω  

The negative sign indicates that the rotation direction is clockwise.  Taking the y-
direction equation 

( )74.2236.369.421 −−−=Bv  

↓= sinvB /2.345  

 

The acceleration of point B is determined using relative 
acceleration. 

( )ABABAB rraa /33/3


××+×+= ωωα  

The direction of the rotational acceleration is again 
unknown, so we will assume a positive counterclockwise 
direction. 

 

( ) ( )( )
( ) ( )( )( )jikk

jikjiaB

ˆ57.15cos5.12ˆ57.15sin5.12ˆ74.22ˆ74.22

ˆ57.15cos5.12ˆ57.15sin5.12ˆˆ34423ˆ53006 3

+−×−×−

+−×++−= α

 

( )
( )( )jikk

jikjiaB

ˆ04.12ˆ36.3ˆ74.22ˆ74.22

ˆ04.12ˆ36.3ˆˆ34423ˆ53006 3

+−×−×−

+−×++−= α

 

jijijiaB
ˆ98.6225ˆ47.1737ˆ36.3ˆ04.12ˆ34423ˆ53006 33 −+−−+−= αα
 

jijiaB
ˆ36.3ˆ04.12ˆ28197ˆ51268 33 αα −−+−=


 

The vector equation can be separated into two scalar equations.  We will again start with 
the x-direction equation because acceleration of point B will be purely vertical. 
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]/[413404.12512680 2
33 srad−=⇒−−= αα  

The y-direction equation gives 

( )413436.328197 −−=Ba  

↑= 2/3507 sftaB  
 

5.0 Brief Review of Calculus 
This section is not intended to provide a full review of calculus.  However, it will provide a very 
brief review of the calculus needed for this course.  Simple polynomial function will be used in 
this course because the derivative and integrals for such functions are very basic.  More complex 
calculus, such as chain rule of differentiation and integration by parts, will not be discussed here 
or used in this course. 

 

5.1 Some Rules of Differentiation 
Kinematics requires differentiation to find velocity and acceleration.  This section will provide 
the basic rules of differentiation required for this course. 

Derivatives give the slope of a curve at a specific point.  One thing to keep in mind is that 
derivatives can be written in different ways.  For example, the derivative of a function )(xf  with 

respect to x can be written as )(xf
dx
d  or )(xf ′ .  Time derivatives (derivatives of a function 

with respect to time) are sometimes expressed in dot notation.  So, x
dt
d  can be expressed as x . 

 

5.1.1 The Constant Rule 

The derivative of a constant function is zero.  If c is a constant, the derivative is expressed as 
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 [ ] 0=c
dx
d  Equation 34 

 

5.1.2 The Power Rule 

If the variable x is raised to a power n, where n is any real number, the derivative with respect to 
x is defined by 

 

 [ ] 1−= nn nxx
dx
d  Equation 35 

 

So, as a general example, the derivative of the function 3)( xxf =  with respect to x would be 

[ ] 23 3xx
dx
d

=  

 

Note that the rule applies to negative values of n.  For example, the derivative of the function 

2

1)(
x

xf =  can be determined by rewriting the function as 2)( −= xxf  and apply the rule given in 

Equation 35. 

 

[ ] 3
32 22

x
xx

dx
d −

=−= −−  

 

For the case when n = 1, the derivative is 
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 [ ] 1=x
dx
d  Equation 36 

 

 

5.1.3 Constant Multiple Rule 

Constants can be “pulled out” of the derivative.  If c is a real number 

 

 [ ] [ ])()( xf
dx
dcxcf

dx
d

=  Equation 37 

 

As an example 

 

[ ] ( ) ttt
dt
dt

dt
d

5
82

5
4

5
4

5
4 22 ==⋅=



  

 

5.1.4 Sum and Difference Rule 

The derivative of more complex polynomial functions can be solved using the sum and 
difference rule. 

 

 
[ ] )()()()( xgxfxgxf

dx
d ′+′=+  

[ ] )()()()( xgxfxgxf
dx
d ′−′=−  

Equation 38 

 

As an example, 
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[ ] 3632 23 +=+ xxx
dx
d  

 

5.2 Some Rules of Integration 
Integration gives area under a curve.  An integral is an antiderivative. 

 

 
CxFdxxf +=∫ )()(  

Where )()( xfxF =′  and C is a constant 
Equation 39 

5.2.1 The Constant Rule 

If k is a constant, the integral of the constant is defined by 

 Ckxkdx +=∫  Equation 40 

 

5.2.2 The Power Rule 

For a case where x is raised to a power n, where n is a real number not equal to -1, the integration 
is defined as 

 

 C
n
xdxx

n
n +

+
=

+

∫ 1

1

 Equation 41 

 

5.2.3 Constant Multiple Rule 

If k is a constant multiplied by a function, the constant can be “pulled out” of the integration. 
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 ∫∫ = dxxfkdxxkf )()(  Equation 42 

 

5.2.4 Sum and Difference Rule 

Integration of more complex polynomial functions can be solved using the sum and difference 
rule. 

 

 
[ ] ∫∫∫ +=+ dxxgdxxfdxxgxf )()()()(  

[ ] ∫∫∫ −=− dxxgdxxfdxxgxf )()()()(  
Equation 43 
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