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Engineering Design 
In any manufacturing or production activity,  the most important concern is the ability to 

monitor the extent to which products and processes meet desired targets or specifications. Two 
culprits have been identified as  major contributors or hindrances to product and process 
improvement and quality more than any other, namely, deviations from specifications; and excessive 
variability and noise around targets or specifications. Due to the complex nature of most production 
activity, these  characteristics  are part and parcel of the true state of nature in any production 
environment. As such, minimizing their effects requires detailed understanding and systematic 
analyses of their impacts and reach, using engineering and scientific design principles and 
techniques. In the developmental and conceptual design stages, designed experiments are utilized as 
tools to  optimize these two quality characteristics in order to enhance process performance.  

A good experimental design is one that furnishes needed information with minimum 
experimental effort.  A good design requires the following: 

a).The questions that are to be answered by the experiment must be clearly and carefully 
formulated.  

b).Correct choice of experimental methods must be made, in light of the required accuracy 
and the various pitfalls likely to be encountered.  

c).The general pattern of experiment (sample size, spacing, the interrelationship of the 
observations) must be clearly identified. 

In general, experiments are designed in an attempt to reduce the noise and increase the 
volume of the signal, in order to maximize the quality of information obtained at a reasonable and 
fixed cost.  

There are several fundamental issues that are central to the successful design of experiments 
for process and quality improvements.  The ability to successfully design, conduct, and interpret 
planned experiments for product and process design and improvement depends on how well these 
elements are understood and operationalized.  An approach to understanding this process is 
encapsulated in the strategy often referred to as the DMAIC (Design-Measure-Analyze-Improve-
Control) process.   

Fundamentally, DMAIC is a data-driven quality strategy for improving processes and is an 
integral part of a company's Six Sigma Quality Initiative. Each step in the cyclical DMAIC  process 
is necessary to ensure the best results. The DMAIC process steps are listed as follows: 

 
 Define the Customer, their Critical to Quality (CTQ) issues, and the Core Business Process 

involved. Define who customers are, their requirements for products and services, and their 
expectations. Define project boundaries as the stop and start of the process. Define the 
process to be improved by mapping the process flow. 

 

http://www.suncam.com/


 
The Design and Analysis of Engineering Experiments I 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 5 of 48 
 

 Measure the performance of the Core Business Process involved. Develop a data collection 
plan for the process. Collect data from many sources to determine types of defects and 
metrics. Compare to customer survey results to determine shortfall. 

 
 Analyze the data collected and process map to determine root causes of defects and 

opportunities for improvement. Identify gaps between current performance and goal 
performance. Prioritize opportunities to improve. Identify sources of variation. 

 
 Improve the target process by designing creative solutions to fix and prevent problems. 

Create innovate solutions using technology and discipline. Develop and deploy 
implementation plan. 

 
 Control the improvements to keep the process on the new course. Prevent reverting back to 

the "old way". Require the development, documentation and implementation of ongoing 
monitoring plan. Institutionalize the improvements through the modification of systems and 
structures (staffing, training, incentives) 

 
Role of Experiments in the Engineering Design Process 

A serious shortcoming of past approaches to process performance has been the inability to 
deal rationally with the performance issue early in the product and process development life cycle. 
Over the past several decades, it has become clear, through the work of Taguchi and others, that 
parameter selection during the early stages of product and process design can be improved by 
measuring performance as it relates to functional variation during use and by proper design of 
experiments. In particular, the concept of robust design, advocated by Taguchi as part of his model 
for the design process, has proven to be an effective tool for product and process design and 
improvement (see figure 1.) 

There is an important distinction to be made between testing and experimentation.  While 
both have their rightful place, one should not serve as an alternative for the other. The Japanese 
have used experimentation, namely “design of experiments”, for parameter selection at the product 
and process design stages. In this case, the objective is to experiment with various combinations of 
the important design parameters for the purpose of identifying the particular combination(s) that 
optimize certain design criteria or performance metrics. 

In the past, a great deal of emphasis was placed on life testing by subjecting many identical 
units to field conditions in order to determine the life expectancy with regard to performance. When 
a design fails, changes are made and the product is retested. The question naturally is: How are those 
changes identified?  The answer, most often, is to adopt a deliberate experimental approach or do 
more ad hoc procedures.  Thus, the life testing of product performance is important, but not a 
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substitute, for experimentation to determine product and process capability or performance in the 
long or short term. 

 
              
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
   
The Role of Statistics and Probability in Engineering Design 
3.1 Review of Statistical Inference 

In many engineering settings, there are typically large numbers of random quantities or 
random variables.  More often than not, we do not know the probability structure of these variables 
or their underlying characteristics. However, we do want to determine these quantities in order to 
have better control of the system operation, which we can accomplish by taking observations on the  
variables. But, we cannot take readings carelessly because there are biases, errors, and noise inherent 
in any such process. Based on the classical definition of probability, the determination of the 
probability or the expected value associated with the random variables would require an infinite 
number of observations.  However, having only samples of finite sizes, we can usually estimate the 
values in question in the form of sample statistics.  
The final result of a statistical inference is always a decision to act or not to act.  In some instances, 
the decision could be to accept the observed or computed value of the estimator in place of the 
unknown parameter, without requiring that it be exactly the true value. On the other hand, we may 
decide to reject or not reject the assumptions about a certain distribution without conceding that 
such a statement is true beyond doubt.  The use of statistical inference enables us to control the 

Figure 1 Taguchi's Method for the Engineering Design Process 
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errors that could arise as a result of our decisions and to ensure that these errors, while inevitable, 
are as small as economically possible. 

Inferential statistics has two main branches, namely estimation and test of hypotheses. For a 
good estimation, a fairly large sample is needed.  In some cases, only very limited samples may be 
available.  Such limitation means that the distribution is already known or assumed before-hand and 
thus, the ensuing analysis verifies that the distribution has not changed. Estimation and tests of 
hypotheses are avenues to substantiate such assumptions or claims. 
3.2 Estimation 

There are two types of estimators (Figure 2), namely point estimators and interval 
estimators.  Two general methods generate estimators of parameters, namely, the methods of 
moments and maximum likelihood. For some problems, both the method of moments and 
maximum likelihood lead to exactly the same estimators, and for others they do not.  When the two 
methods do not agree, the maximum likelihood estimator is usually preferred.  

 
 
 
 
 
  Figure 2 The two types of Estimators 
 
3.3 Point Estimates 

A point estimate is a single value or point on the real line, which we feel is a good guess for 
the unknown population parameter value that is being sought.  The motivation for conducting an 
experiment stems from the understanding that, in most cases, it is impractical to obtain the value of 
the parameter that we seek, since it would require the almost impossible task of observing the 
outcome of an infinite population.  This being the case, the problem then reduces to one of 
attempting to extract as much information as possible about the parameter from the sample(s) based 
on the sample statistic. In other words, point estimates are summary statistics that capture the 
essence of the sought-after parameter..  However, there are several ways to represent this 
information.   

As an example, in estimating the central tendency, which is a population parameter, it is 
generally agreed that the mean and the median are both reasonable quantities with which to measure 
such a parameter.  Also, in estimating the variance of a random variable, the sample variance and the 
range are both used as estimators. Obviously, only one of these estimates can be used or employed 
at any one time.  Thus, there needs to be a set of criteria, standards, or properties by which to judge 
or characterize the estimators. The properties of unbiasedness and efficiency are some of the 
properties that are desired in a good estimator.  A statistic X is called 'best unbiased estimator 
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(BUE)' for the parameter  θ, if the statistic is unbiased and efficient, i.e., if E (X) = θ and if the 
variance of X   is less than or equal to the variance of every other unbiased statistic.  
Single or Point Estimates of the mean:  
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In the case of the sample mean and median as estimators of the population central tendency, 

both are unbiased estimators, i.e., E(X) = θ and θ=)~(XE . However, the best unbiased estimator 
(BUE) is the sample mean because it has the minimum variance with respect to all the estimators of 
θ. In the case of the sample mean and median as estimators of the population central tendency, both 

are unbiased estimators, i.e., E ( X ) = θ and θ=)~(XE . The variance of the sample mean and that 
of the median are as shown.  

( ) ( )
n
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n
σσXVMean,theFor

2
2
X~

2
2
X ====  

The variance of the median is 1.57 times the variance of the sample mean.  Therefore, using the 
criteria for BUE, the sample mean is considered the BUE because it has the minimum variance with 
respect to all the estimators of θ.  As noted previously, both the Mid-range and the Mode are also 
unbiased estimators of the population mean but they are not BUE. 
             
  
        
        
 
 
         
 
 
3.3.1 Point Estimates for the Mean and Variance of the Population 
The following are the point estimates for the mean and variance. For the mean, we have  
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Figure 3 Variance of Mean and Median 
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3.3.2 Central Limit Theorem 
  The central limit theorem (CLT) is a statistical theory that states that, given a sufficiently 
large sample size from a population with a finite variance, the mean of all samples from that 
population would be approximately equal to the mean of the population. Let  

nXXXX ,......,, 321   
denote the measurements or output of a random sample of size n from any distribution having finite 
variance σ2 and mean µ, then the random variable: 

 ( )
X

Xn
σ

µ−   

has a limiting normal distribution with zero mean and variance equal to unity.  In other words, even 
though the individual measurements have a distribution that is not the normal distribution, the 
distribution of the sample means  

nXXXX ,......,, 321  as n→ ∞   
tends to be approximately normally distributed.  In other words, the sampling distribution of the 
sample means is the normal distribution When this condition is true, it would be possible to use this 
property to compute approximate probabilities concerning the distribution and to find an 
approximate confidence interval for µ and to test certain hypotheses without knowing the exact 
distribution of µ in every case or situation. 

The CLT establishes that, for the most commonly studied scenarios, when independent 
random variables are added, their sum tends toward a normal distribution even if the original 
variables themselves are not normally distributed. This is very important, especially because it is 
often difficult to determine the underlying parent distribution, which is needed to determine the 
probabilities of event occurrence to enable engineering decisions to be made in an informed 
manner. 
3.3.3  Sampling Distribution for the Mean 
 The sampling distribution of the sample mean is the normal distribution based on the CLT. 
In other words, the distribution of the sample mean X  is the normal distribution with mean:  

 
n

andX XX

2
2, σσµ ==  

 A sample of 25 spur gears is taken from the lot resulting in the Diametral-Pitch (DP) 
measurements are as shown in table 1. Another sample could be taken from the lot with a mean 
value: .41 inchesX =  yet another sample from the same lot could yield a DP of: .61 inchesX = The 
larger the DP, the higher the stress on the gear tooth. Let the average, the DP = 4 inches with  
S= 0.55 inches.  Find the probability that some of the gear-spurs will not meet the requirement, that 
is: )( 0µ>XP .    
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S/N Diametral 
Pitch (DP 

inch) 

S/N Diametral 
Pitch (DP 

inch) 
1 2.442966 14 4.616154 
2 5.870707 15 3.914669 
3 4.127012 16 5.484784 
4 2.060597 17 3.387145 
5 5.96805 18 2.976296 
6 3.022355 19 4.135116 
7 3.301695 20 4.422885 
8 5.172247 21 5.738772 
9 5.341773 22 4.407002 

10 4.402271 23 4.690581 
11 2.806244 24 3.997262 
12 4.831229 25 3.40529 
13 3.224622 Mean  4.149909 

  
Std. Dev 1.09433 

  

                 Figure 4 Sketch of Probability Distribution for X-bar 

X
 

Table 1: Diametral Pitch (DP) Measurements (in.) 
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 There is only a 9% chance that the spur-gears from that population will not meet the 
requirement. Note that we did not use the standard deviation we computed for the data for the 
problem. Why? You will recall that the focus is on the sampling distribution for the mean.  The 
mean is the random variable in this case.  Later, we will consider the sampling distribution for the 
variance based on the variance from the data. Each sample we take, just like the mean, will yield a 
variance statistic, since the variance is a random variable.  Due to the unbiased nature of the 
sample mean as an estimator of the population mean, the sampling distribution of two or 
more means is normally distributed. The sum of the means is also normally distributed. 
3.1.4 Sampling Distribution for the Mean when sample size n<30 
    Student-t  distribution is similar to the standard normal distribution when the sample size is small, 
typically n<30.  Characteristics of Student-t distribution include the following: 
1).The probability distribution appears to be symmetric about t = 0 just like the standard normal 

distribution 
2).The probability distribution appears to be bell-shaped.   
3).The density curve looks like a standard normal curve, but the tails of the t-distribution are 
"heavier" than the tails of the normal distribution.  That is, we are more likely to get extreme t-values 
than extreme z values.  The nice thing about the t -distribution, is that we can use it when the sample 
size does not justify the use of the standard normal, that is, when n<30.  
Recall that in the case of the Standard Normal Variable, the random deviate:  

n
XZ

/σ
µ−

=  

In the case of the t distribution, the random variable, t, is give as:  

nS
Xt

/
µ−

= , with (n-1) DF 

3.3.4 Sampling Distribution for the Sample Variance  
From the CLT, we know that the distribution of the sample mean is approximately normal. 

Unfortunately, unlike the sample mean, there is no CLT analog for the variance. However, when the 
individual observation Xis are from a normal distribution, there is a special condition under which 
we can consider the sampling distribution of the sample variance. Suppose, as indicated earlier, X1, 
X2, .. , Xn are from a normal distribution, N (µ,σ2), and we will recall that the CLT applies to any 
arbitrary distributions. If this is true, the distribution of the sample variance is related to the Chi-

Square distribution For the X1, X2, . . ., Xn, ∑
=

=
n

i
iX

n
X

1

1  is the mean, and ( )∑
=

−
−

=
n

i
XX

n
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1

22

1
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is the sample variance, then ( )
2

21
σ

Sn − is the chi-square distribution with (n-1) degrees of freedom. 

The table for the Chi-Square is available in most basic statistics texts. 
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3.3.5 Sampling Distribution for Two Variances 
When the variances from two or more sources are being evaluated, the resulting sampling 
distribution follows the Snedecor’s F-distribution or simply the F-Distribution. The sampling 
distribution for two variances is used to test whether the variances of two populations are equal. The 

F distribution is given as: 2
2

2
2

2
1

2
1

/
/
σ
σ

S
S

F =  , with (υ1, and υ2), where υ1 =n1-1 and υ2 =n2-1;  

where the notation of 1 or 2 is perfunctory and depends on which variance is larger.  
Please note, that for ease of computation, it is recommended that when taking ratios of sample 
variances, we should put the larger variance in the numerator and the smaller variance in the 
denominator. We will see how this is done with a numerical example later. In order to use this test, 
the following must hold: 

• Both populations are normally distributed 
• Both samples are drawn independently from each other. 
• Within each sample, the observations are sampled randomly and independently of each 

other. 
3.4 Interval (Confidence interval) Estimators 

In practical situations, there are  two types of estimation problems.  In one case, we may 
have a constant, φ, a theoretical quantity that must be determined by means of measurements.  Some 
examples include: the time it takes to complete a machining operation, the amount of yield from a 
given reaction, the number of material handling moves required for a certain material handling type, 
and so on.  The result, Y, of the measurement activity is a random variable whose distribution 
function depends on the constant,  φ, and perhaps other quantities.   

If we want to use a single number in place of the unknown constant or parameter, then 
point estimation is the appropriate method.  If we are using a good estimator (unbiased and 
efficient), then the resulting estimate should be close to the unknown true value. However, we know 
that the estimator is subject to error of measurement (in the case of the constant) and variability (in 
the case of the random variable).  Consequently, it is instructive to have some information on the 
deviation from the true value (in our case, the true mean or the true deviation).  This is where 
confidence intervals come in.  Due to the variability or error in measurement, we want to establish 
an interval within which we would expect to find the value we seek. In other words, in repeated 
sampling and using the same method for selection , we would expect the true parameter value to fall 
within a specified interval a given percent of the time.  For example, a 95% confidence interval 
means that in repeated sampling and using the same sampling method, we would expect the true 
parameter value to fall within our confidence interval 95% of the time. Let us do some 
housekeeping before we delve deep into the area of Confidence Intervals.  First, let us look at the 
error associated with the estimate .X  
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Reworking, we have the confidence interval for the mean which is a probability statement  given by: 
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3.4.1 Determination of Sample Size 
If we examine the error associated with the mean X-bar, say E, where E is given by:

µ−= XE ,  we can re-express Z as follows 
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 You might ask  what this all means or why we need a value for n.  The problem is that 
ordinarily the value of n is not given; thus, the sample size is unknown. Customarily, a company may 
have a policy dictating the size of the process errors that has been determined using historical data. 
The given value and the level of confidence specified based on the data will help determine the 
sample size needed to cover the error. For example, a company may say that it is comfortable with 
an error of ±10%, this being the error between the true mean and the estimated mean.  
 Example:  A company is willing to accept an error of ± 15% with  90% confidence.   
a). Assuming that the variance is known and σ =1.5 units.  What sample size will guarantee this level 
of protection? b) Assuming that variance is unknown and that somehow the company has an 
estimated value from experience for the process sample standard deviation, S=2 with 90% 

confidence. What sample size will be required? knownisσif
2

2/
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Figure 5 Confidence Interval for the Mean 
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α = (1-0.90) = 0.1, α/2=0.05, E=0.15. from the standard normal table Z0.05=Z0.95=1.645 
Strictly speaking, there is no way we can evaluate this without knowing the sample size.  Remember 
that to evaluate the t-statistic we need the degrees of freedom equal to n-1.  Even though the 
variance is unknown, we do have the estimate of S determined historically. Therefore, we can use 
the Z distribution in place of the t-distribution to evaluate the sample size.  Note that the t-statistic 
and the Z-statistic are identical when n = infinity.  In this case, use the value of t-statistic with υ =∞. 

( ) 480
15.0

2645.1 22
2/ =



=








=

E
St

n α  

3.4.2 One-Sided Confidence Intervals 
Under certain conditions, only one-sided intervals may be of interest.  For example, in the 

case of still bars, we want the measured strength to be as high as possible. Therefore, our  main 
concern is that the strength values do not go beyond a certain lower limit. Accordingly, we would 
establish a lower confidence (one-sided) interval.  By contrast, we may have a variable (the number 
of defects) whose value we would want to be as close to zero as possible. For this, we are only 
concerned with how high the value can go, so we  establish a one-sided confidence interval. A one-
sided confidence interval is looked at as a one-tailed interval (upper confidence level (UCL) or lower 
confidence level (LCL), but not both) unlike the two tails of the two-sided confidence interval.  That 
being the case, we use α rather than α/2.  
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Let us use an example to illustrate. For a product C and n=25, let the mean of the grinding duration  
X = 15 minutes, S =1.5 minutes.. Find the 95% lower confidence interval (LCL) for the of product 
C. LCLt. Since n<30, we will assume that the sampling distribution is the Student-t distribution with 
the sample statistic equal to the t 
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3.5 Test of Hypothesis 
A test of hypothesis is a test on an assumption or statement that may or may not be true 

concerning the parameter of the population of interest. An examination of the entire population 
determines the truth or falsity of such a test.  Since this is impractical in most situations, a random 
sample is taken from the population and the information used to deduce whether the hypothesis is 
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likely true or not.  Evidence from the sample that is inconsistent with the stated hypothesis leads to 
a rejection, whereas evidence supporting the hypothesis leads to its acceptance. The acceptance of a 
statistical hypothesis does not necessarily imply that it is true.  Thus, hypotheses that are formulated 
with the hope of rejecting are called null hypotheses and denoted by Ho. The rejection of Ho leads to 
the acceptance of an alternate hypothesis denoted by H1. The decision to reject or not reject a 
hypothesis is based on the value of the test statistic.  The test statistic is compared to a critical value.  
The critical value is based on the level of significance of the test and represents values in the critical 
region, as defined by the significance level.  
3.5.1 Errors Associated With Decisions on Test of Hypothesis 

A decision to reject or not reject a test  leads to two types of errors.  The  error is the result 
of a decision made based on information from a sample rather than the actual process population 
itself.  The fact is that we are trying to ascertain the true state of nature using information from the 
sample. We, of course, do not know the true state of nature and would like to infer it from the 
sample. This notion is perhaps one of the most important foundations of statistics. So, while we do  
seek the population value, we can only approach it by way of the sample value, which is of limited 
value unless it points us to or gives us the population value.  

All samples are taken, not for their own sake, but to provide information or inference about 
the population value. There are two types of errors that are possible in statistical testing: Type I (α), 
and Type II (β). A type I error is committed when the null Hypothesis (H0) is rejected. 
Alternatively, a type II error is committed when the null Hypothesis (H1) is not rejected.  This is 
loosely referred to as accepting the null Hypothesis. These errors are aptly demonstrated by the 
schematic in Table 2. 

                 TRUE STATE OF NATURE 
     
    H 0 True                       H 0 False 
 DECISION  Accept  NO ERROR                TYPE II ERROR    
 DECISION Do not  TYPE I ERROR         NO ERROR    
Accept    
    

 
 
3.5.2 Computation of the Required Sample Size (n) given (α) and (β) 

In order to exert some control over a process, the engineer might specify the size of both 
Type I and Type II errors that the system can tolerate.  The next step is to determine what value of n 
(sample) would help guarantee the level of protection based on these error levels.  When the 
underlying process is normally distributed or when our focus is on the mean of the process, as you 

Table 2 Schematic for Type I and Type II Errors 
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may recall, even if the process is not normally distribution according to the central limit theory, the 
means from the process follow the normal distribution. Assume we have specified α and µ0. If we 
also specify β, then we must necessarily specify µ1. A sketch of the relationship between these 
parameters will help explain the procedure (figure 6). 
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Let: µ0=100, σ=10, α=0.05.  Let β=0.1 for µ1=110.  
Compute n that will provide the level of protection given by the Type I and Type II errors.
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For μ1 >μ0, Zβ, = αZn −∆ ,  For μ1 <μ0, Zβ,  = ( )∆+−Φ− nZα1   
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Figure 6  Location of α and β 
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3.5.3 Hypotheses Test for one mean 
1.Specify the null and the alternative hypothesis. 
  Ho: µ0 = 100 g, H1: µ0 > 100 g 
2. Specify the data needed and the sample size for the test for this one-sided test.  
    Note that since σ is known or given, then the Test Statistic is the Z (normal distribution).  
  α = 0.05, Hence Z0.05=Z0.95 =1.645, n =9, σ = 10, 103=X  
3. Critical region: Reject if Z >Zα 

      4. Compute the Test Statistic,  
  ( ) ( )( ) 9.0

10
3100103

3
10

1001030 =
−

=
−

=
−

=
n

X
Z

σ
µ  

      5. Decision: Since Z< Zα (0.9<1.645), Therefore cannot Reject null (H 0). 
 Question: How high a value of the Sample can we get before we reject the null hypothesis? 

  ( )( ) ( ) 5.1055.5100100
3

10645.1645.1
10

3100
=+=⇒−=⇒=

− XXX  

 Thus, if we get a value of 5.105≥X , then we will reject H0. 

3.5.4  Hypothesis Test for One Variance  
1.Specify the null and the alternative hypothesis.  
  Ho :σ2 = 40 , H1 :σ2: > 40 
2. Specify the data needed and the sample size for the test for this one-sided test.  
  α = 0.01, n =12, σ2 = 40, S2=62.  Test Statistic is the Chi-Square. 
3. Compute the Test Statistic.  

  ( ) ( ) 05.17
40

67111
2

2
2 ==

−
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χ Sn  

4. Critical region: reject if  2
11,01.0

2 χχ >  725.242
11,01.0 =χ  

5. Decision: Since 2
11,01.0

2 χχ <  (17.05<24.725), Therefore cannot Reject null (H0). 

3.5.5  Hypothesis Test for Two Variances  
1. Specify the null and the alternative hypothesis. 
  2

2
2
11

2
2

2
10 :,: σσσσ ≠= HH  

2. Specify the data needed and the sample size for the test for this one-sided test.  
         α = 0.01, 22

111 10,2.42,8 gSgXn === , 22
222 18,5.44,15 gSgXn ===  

       3. Compute the Test Statistic is the F-distribution:  
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       4. Critical region: reject if  14,7,95.014,7,05.0 FForFF <> , ν1= n1-1=7, ν2=n2-1=14,  

  Note that ( ) 2121 ,,2/1,,2/ υυαυυα −> FF ,   Also:  
12
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,,,

,,1
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υυα F

F =−    
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F
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      5. Decision: Since ( )53.3
1

18
10

14,7,95.0 >> FF , Therefore cannot Reject null (H 0) 

Since we cannot reject H0, we can assume that the two variances are equal.  This fact determines 
what type of pooled variances we can use to test the hypothesis of two means in this problem. 

Given this test result, we will use the pooled variance as follows: ( ) ( )
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3.5.6 Hypotheses Test for Two Means 
          1. Specify the null and the alternative hypothesis.  

211210 :,: µµµµ ≠= HH  
2. Specify the data needed and the sample size for the test for this one-sided test. 
    Note that since σ is an unknown equal and the sample sizes are <30, then the Test Statistic is             
the Student-t distribution.  
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3. Critical region: Reject if  08.2:, 21,025.021,025.0,2/ =>⇒> tbuttttt υα  

 4. Compute the Test Statistic,  
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5. Decision: Since ( )08.234.1,21,025.0 << tt Therefore cannot Reject null (H 0). 

3.5.7 Operating Characteristic Curve 
Operating characteristic curves are useful tools for exploring the power of a control process. 

OC curves provide a mechanism to gauge how likely it is that a sample statistic is not outside of the 
control limits when, in fact, it has shifted by a certain amount. This probability is usually referred to 
as β or Type II error probability, which is the probability of erroneously accepting the ‘true state of 
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nature’ (e.g. mean, variance, etc.) as being a given value, when in fact it is not.   Note that operating 
characteristic curves pertain to the false-acceptance probability.  The sample size for establishing an 
OC curve is determined by the cost of implementing the plan (e.g., cost per item sampled) and on 
the costs resulting from not detecting quality problems and thus passing unfit products. 
3.5.8 Computation of the Parameters of the OC Curve  

A Type II error (β) is the probability of accepting the original hypothesis H0 when it is not 
true or when some alternative hypothesis, H1 is true. Thus, β is a function of the value of the test 
statistic that is less (or greater) than the hypothesized value.  Suppose we start with the hypothesis: 

12:,12: 0100 >= µµ HH .  Let n=16, and σ=7. α=0.05, Zα=1.645 

Recall: ( )
σ

µµ
αβ

01,
−

=∆−∆= whereZnZ . 

We can now examine how β varies.  
For μ1=13, Zβ=(1/7)(4) -1.645 = -1.074  
 β =1-ɸ(-1.074)=1- {1-ɸ(1.074)}=1-0.1 
 For μ1=15, Zβ=(3/7)(4) -1.645 =  0.0692  
 β=1-ɸ(0.074)=1-0.53=0.47 
For μ1=17, Zβ= (5/7)(4) -1.645 =  1.212  
 β=1-ɸ(1.212)=1-0.8869=0.11 
 

Table 3 Computation of the parameters of the OC Curve 
 

1µ             ∆    αβ ZnZ −∆=       β 1-β  
(power of the test) 

13 1/7 -1.074 1-0.14= 0.86 0.14 
15 3/7 0.0692 0.47 0.53 
17 5/7 1.212 0.11 0.89 
19 1 2.355 0.01 0.990 
21 9/7 3.50 0.001 0.999 
26 2 6.33 0 1 
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   Figure 7 Plot of the Operating Characteristic Curve 

  

Purpose and Nature of Planned Experiments 
Scientists and engineers are involved in experimentation as a means to describe, predict, and 

control any phenomena of interest. The collection of data is a fundamental activity for the building 
and verification of mathematical models, whether such models are derived from first scientific 
principles or are purely empirical in nature. Comparative experiments are an important means to 
discern differences in the behavior of processes, products, and other physical phenomena as various 
factors are altered in the environment. Too often, data analysis, modeling, and inference are given 
too much emphasis at the expense of the activities that embrace the planning and execution of 
experiments.  
    It is assumed that valid and meaningful data are available either from passive observation of 
the process or from purposeful experiments and that statistical methods embrace the analysis of 
such data.  It is, however, the planning or design stage leading toward the collection of data that is 
critical and needs to receive more attention, and it is really here that a statistical approach to the 
design of experiments is so important.  If experiments have been designed and conducted properly, 
the analysis is usually straightforward and often quite simple, given the appropriate tools.  

The purpose of most experimental work is to discover the direction(s) of change which may 
lead to improvements in both the quality and the performance of a product or process.  Too often 
in the not too distant past, there was a tendency to conduct studies farther downstream, at the 
process, while the use of design of experiments was less commonly embraced by the engineering 
community for product design purposes.   

Today, the concurrent or simultaneous engineering of products and their attendant 
processes is receiving widespread attention.  Mathematical modeling, computer simulation, and the 
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associated use of designed experiments all play a central role in the design activity. In investigating 
the variation in performance of a given process, attention must focus on the identification of those 
factors which, when allowed to vary, cause performance to vary in some way. Some of these factors 
are qualitative in nature, sometimes referred to as categorical variables, while others are quantitative 
in nature with the inherent ability to change continually. 

 
4.1 Definitions 
4.1.1 Experimental Variables: The two main variables in an experiment are the Independent 
and Dependent (or Response) variable. An independent variable is  the variable that is changed 
or controlled in a scientific experiment. It represents the cause or reason for an outcome. The 
dependent or response variable is 'dependent' on the independent variable. As the experimenter 
changes the independent variable, the effect on the dependent variable is observed and recorded. A 
change in the independent variable most likely will cause a direct change in the dependent variable. 
The effect on the dependent variable is measured and recorded. 
4.1.2 Experiments:  Not all study is research, nor is all research experimental. A true experiment 
is one in which certain independent variables are manipulated and their levels assigned at random in 
order to determine their effect on one or more response variables. The notions of manipulation 
and randomization are essential for a true experiment, in order to infer cause and effect.  
4.1.3 Quasi-Experiments: There are experiments where randomization is not possible. For 
example, in an attempt to determine the effect of two methods of in-plant instruction, it may not be 
physically possible to randomly assign the workers to the two instruction types. Classes may have 
been formed by shifts or by division or operation. In this case, we can use a flip of the coin to 
determine which shift or group goes to which method of instruction. It is important, however, in 
this type of experiment, to show that the groups or classes are similar. This could be done by 
randomly assigning the individuals to the different groups. 
4.1.4 Ex-Post-Facto Research: Ex-post-facto research is one where the experimenter has little 
to do with the independent variables. The independent variable would already have been acted upon 
and the researcher simply examines the results or the effect on the response. The researcher only 
studies what is available and attempts to make some inference. For example, in the study of the 
effect of rainfall and sunshine on crop yield on a plot of land, rainfall as an independent variable 
cannot be manipulated or randomized as is required in a typical experiment. As a result, inferences 
are dangerous in ex-post-facto research, except when competing hypothesis have been ruled out. 
4.1.5 Correlation and Regression: In Regression, levels of the independent (constant) variables 
are set and then observations are made on the response variable. The purpose of course is to find an 
equation or a functional form relating y to specified ranges of the independent variables. In 
Correlation studies, the variables in pairs(x,y) are both random. Statistics are computed to 
determine the strength of the relationship between x and y. A strong correlation does not necessarily 
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imply a cause and effect relationship. Thus, regression is used in true experiments where the 
independent variables are manipulated and randomized, whereas correlation is used in ex-post-facto 
studies where it is desirable to find the strength of the relationship between variables. 
4.1.6 Independent Variables: There are  three ways to handle independent variables. They can 
be rigidly controlled; that is, the variables remain fixed throughout the experiment. They can be 
manipulated or set at levels of interest. They can also be randomized in which the order of 
experiments is randomized to average out the effect of the variables that cannot be controlled 
(noise). 
 

4.2 Phases of an Experiment 
There are three important phases of a planned experiment: planning, design, and analysis. 

1. Planning: Clear statement of the problem and choice of measurable response/dependent 
variable. Choice of treatment/factors (independent variables). Are the factors quantitative 
(temperature) or qualitative (operator), and are they fixed or random? How will the data be collected 
and measured? 

2. Design How is the data collected? How many observations are to be taken (n)? How large 
of a difference is to be detected? What is the method and order of randomization? What is the 
mathematical method to describe the experiment and what hypothesis will be tested? 

3. Analysis: Data collection, Computation of statistics, Interpretation of results. 
 
Important Issues in Planned Experiments 
5.1 The Notion of the Mathematical Model 

A fundamental task in the design of experiments is that of selection of the appropriate 
arrangement of test points within the real number space defined by the independent variables. 
Although many different considerations must come into play in selecting a test plan, none can be 
more fundamental than the notion of the mathematical model.  Suppose that we are interested in a 
system involving a mean response, η, that depends on the input variables x1, x2, . . . , xn. Then one 
could write that:  η = f(x1, x2, . . . , xn: θ1, θ2, . . . , θk). 
  That is, the mean response, η, could be expressed as a mathematical function, f, with 
independent variables x1, x2, . . , xn and a set of parameters θ1, θ2, . .. , θk. Sometimes we know 
enough about the phenomenon under study that we can use theoretical considerations to identify 
the form of the function f.  For example, a chemical reaction may be described by a differential 
equation which, when solved, produces a theoretical relationship between the dependent and 
independent variables.  Even if the form of f is known, the values of the parameters θ1, θ2, .  . , θk 
would generally not be.  The observed data y are therefore represented as: 
  Y = f(x1, x2, . . , xn: θ1, θ2, .  . , θk) + εij  , 
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where εij  is the experimental error of the observation and is assumed to be Normal, Independent 
and Identically Distributed NIID(0, σ2). 

The problem is that in most situations, little is known about the underlying mechanisms of 
the process.  In most physical situations, we can say that f represents a relatively smooth response 
function.  But without knowledge of the physical mechanisms, how can we proceed to explore the 
response surface with the ultimate goal, perhaps, of finding the values for x1, x2, . . , xn that optimize 
the mean response η? When we have limited knowledge,  we must rely on empirical models that 
serve to approximate the true, but unknown, model describing relationships through the data, for 
example:   
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It is important to plan experiments in such a way that several specific empirical forms can be 
examined and the best can be determined through the data once the experiment has been 
completed.  As an example, let us suppose that f can be represented, for a certain situation, by a 
simple and flexible graduating polynomial, say:  

2
222

2
111211222110ˆ xbxbxxbxbxbb +++++=η  

If we can fit this function to data obtained from an experiment, we can use this equation to more 
clearly visualize and, hence, explore the complete nature of the response surface (e.g., perform 
optimization and sensitivity analysis. 

Whether explicitly recognized as such or not, most experimental studies are aimed either 
directly or indirectly at discovering the relationship between some performance response and a set 
of candidate variables which influence that response. In most studies, the experimenter begins with a 
tentative hypothesis concerning the plausible model form(s) to be initially entertained. 
We must then select an experimental design that has the ability to produce data capable of:  

1.  Fitting the proposed model(s) (i.e., estimate the model parameters). 
2. Putting the model in jeopardy so that inadequacies in the model can be  detected through 

analysis. 
The second consideration is of particular importance in the above scenario. iWe must ensure 

that, through a series of iterations, the most appropriate model can be determined, even while others 
may be shown to be less viable through the available data.  For example, if a quadratic relationship 
between temperature and reaction time in a chemical process is suspected, an experiment that 
examines the process at only two temperature levels (data points) would be inadequate to reveal this 
functional possibility.  However, an experiment that was run at three levels of temperature would 
allow this functional possibility to be considered and explored.  On the other hand, an experiment 
that has five levels of temperature would be unnecessary and inefficient if the relationship was truly 
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quadratic.  In general, the experimental design should be responsive to the mathematical model 
being proposed.   

 

The Effects of Changes in the Independent Variables 
 

Often, the variables of importance that govern a process are not clearly known a priori.  
Thus, it is important to examine the effects of several variables, together and independently, to 
determine the true change in each of the variables.   Furthermore, it is important to determine how a 
variable effect varies with the given states of the process (i.e., with respect to other variables).  When 
this is the case, the design itself, namely, the arrangement of the tests, becomes a very significant 
factor.   

Suppose, in a given situation, that four variables seem important.  In a one-variable-at-a-time 
situation, one approach to experimentation would be to hold three of the variables constant while 
varying only one variable.  The result of such an example could look something like figure 7.  

 
 

 
Figure 8 One-variable-at-a-time Experiments 

This process would then be repeated for each of the other variables.  There are several 
problems with this one-variable-at-a-time approach.  One of the problems has to do with the fact 
that most variables do not influence the response of interest independent of the others.  The 
following example will illustrate this possibility.  

Suppose two factors, temperature and pressure, are thought to affect the reaction time of a 
chemical process.  Two experiments, I and II, were run to understand how each factor affects 
reaction time.  Using the one-variable-at-a-time approach, the results could be entirely different, due 
to selection of the different fixed levels for the factors that are not under consideration during the 
test. Figure 8 illustrates such possible outcomes as a result of the choice of different settings of  
these two factors between the two experimental runs. Figure 8 shows that the effect of temperature 
depends on the level of pressure and vice versa.  This behavior connotes the idea of the interaction 
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of the variables.  It sometimes also is a problem of multi-collinearity and/or correlation. In 
summary, the one-variable-at-a-time experimental approach presents problems. Specifically:  
 a). It generally gives rise to a large number of tests, resulting sometimes in too many levels of 

each factor. 
 b). It does not recognize variable interdependencies, which results in a highly conditional or 

narrow interpretation. 
 c). It promotes a systematic test sequence in which it is possible to have unknown effects that 

change during the experiment, thereby biasing the results and thus making the validity 
questionable. 

 d). It does not lend itself well to some important experimental schemes such as blocking.  In 
any planned and well-designed experiment, the aim is to obtain an estimate of chance 
variation that is not inflated by assignable causes.  A way to solve this problem this is to 
utilize the scheme of blocking in which the experiment is repeated in blocks where the 
known sources of variability are held fixed in each block, but vary from block to block.  

 
The Effect of Noise in An Experiment  
The experimental study of any phenomenon is made difficult by the presence of noise, sometimes 
called experimental error, which is different from natural or chance variability.  Typically, each 
process has many more variables than are identified during each experiment.  Thus, some of the 
factors not under study do vary during the experiment.  Although the variation of any one of such 
factors may produce a very small change in the performance measure under study, in the greater 
context of the overall experiment, the fact that many such forces are at work simultaneously 
produces a noticeable and sometimes sizable level of system noise.  When the system is stable, these 
are the forces of common-cause.  Also, such variation,referred to as white noise to emphasize its 
random nature, may cloud or mask the effect of changes in the factors under study in an experiment. 
Some noise sources in the system may be of a more spurious nature.  Such sporadic disturbances, 
sometimes of a sizable magnitude, can further contribute to clouding the results of experiments and 
may even bias the results, especially if their occurrence is systemic in nature. Such structured or 
systemic variation is sometimes referred to as colored noise.    
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7.1 Experimental Design Strategies to Cope with Noise 
Some specific design strategies that deal with the effect of noise include the following: 
a). Reduce the effect of Systemic Bias. Counteract the effect of unknown systemic variation 
in the experiment by the use of randomization of the tests so that such variation is uniformly and 
randomly distributed across the trials conducted. 
b). Replication. One of the most important statistics that any experimental designer would 
want to have is the estimate of pure error, which measures chance variation. A way to think about 
pure error is the following.  Assume that it is possible to take readings at certain experimental points 
(say temperature settings, pressure settings) during an experiment. This means that if there were no 
other issues related with the design, the measurements obtained from the different readings taken at 
the same settings would be exactly the same.  The only reason they would be different would be 
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Figure 9 A Variable-at-a-Time Design 
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because of chance variation or pure error. Thus, if we want an estimate of pure error, then 
replication is one of the approaches to data acquisition that would make that possible.  
c). Identify and Isolate Known Sources of Variability through Blocking. In some 
production schemes, items are produced in blocks.  For example, it may not be physically possible to 
produce all the required demand in a single shift.  Thus, different production quantities might be 
scheduled in different shifts or days, depending on the size of the production quantity or demand. 
For example, a company has a certain lathe to produce a special, part but the capacity of the 
machine is limited so that it is not possible to produce all of the runs of the production at one run or 
setup. In that case, the production quantity would be broken up into blocks (days, shifts, etc) and 
analyzed as such. 
d). Confirmatory Test. Include confirmatory testing as part of the experimental strategy.  The 
ultimate value of designed experimentation lies with the "persistence of effects" when improvement 
opportunities are revealed through the experiment.  Hence, it is important to run additional trials 
under specific conditions determined from the analysis in order to verify the improvement 
opportunities revealed by the experiment.  
 

Single Factor Design of Experiments 
 

A single factor experiment is one where the focus is only on one factor (quantitative or qualitative). 
All other factors are held constant. In single factor experimentation, we represent the single 
dependent variable and the response variable with a linear model: 
  
 
Where: 

yij = (ij)th observations 
                                    μ= The overall mean of all the observation 

          τi = The ith treatment effect 

ijε  is the error due to other sources of variation other than the treatment effect. 

A One-Way ANOVA (Analysis of Variance) is a statistical technique for a single factor 
experiment with several levels (or treatments) of the single factor ( usually more than three levels) in 
which we test to see if the different levels of the single factor ( or treatments) are significantly 
different based on the responses obtained from the experiments.  It tests whether the value of a 
single variable differs significantly among three or more levels of a factor. We can say we have a 
framework for one-way ANOVA when we have a single factor with three or more levels and 
multiple observations at each level.  There seems to be a lot of emphasis on the levels of the 
treatment. Why?  As we will find out later, the levels of a factor determine the degrees of freedom 
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for the effect which makes it possible to conduct a test of significance using the degrees of freedom 
as the divisor.   

Consequently, if the number of levels of a factor is two, the degrees of freedom is a-1 or (2-
1) which is 1.  The degrees of freedom should have a value of at least two or higher, if at all possible. 
Later we will see the significance of this rule of thumb and how it is implemented on an ANOVA 
table.  

  On the ANOVA table, the Total Sum of Squares (SSTotal) is parttioned into the Sum of 
Squares due to treatment, the Sum of Squares due to blocks or restrictions and the Error Sum of 
Squares. In other words, the Total Sum of Squares is the sum of all the Sum of Squares of all the 
admissible terms or elements in the ANOVA table when properly adjusted. In certain cases the  
Sum of Squares certain elements cannot be adjusted and they are not considered as part of the Total 
Sum of Sqaures and as such they cannot be tested for significance. 

As we shall see from the ANOVA table, the Sum of Squares Total (SST), and the Sum of 
Squares for each element (treatment, block, error) are used to compute the Mean Square (MS). The 
MS for each element on the ANOVA table is obtained by dividing each Sum of Squares by the 
correspondigng degree of freedom. To test for significance, the MS of each term in the model is 
divided by the MS(Error).  The ratio of an MS to MS(Error) is the computed F-ratio. If the F-ratio is 
greater than the F-value from the table, then we have significance.  If it is less than one ( i.e., if the 
Fratio <1)then that particular element or tem on the ANOVA table is not significant.   
Total: df(Total)=N-1, Treatment (dfTr)= a-1 , Error (Residual df Error)=(N-1)-(a-1).  
 
 
 
 
 
 
 
 
 
 
 
 
Note that the treatment effect of fixed preselected levels of the independent variable is the focus 
here. Hence, the results cannot be extended beyond the “a” levels. When the number of levels of 
the treatment is fixed then we have a Fixed Effects Model. If on the other hand the treatment levels are 
chosen as a random sample from a larger population, then the treatment effect τi is now a random 
variable. Here the knowledge about particular τi’s that are been investigated is useless. Instead, we 

Table 4 Data Layout for Single Factor Design 
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test hypothesis about the variability about τi and try to estimate this variability. This is called Random 
Effects Model. 
 
8.1 Analysis of the Fixed Effects Model 
Let τi = deviation from the overall mean for ith treatment. Hence,  
  
 
     
            
Hypothesis: 
 
 
 
The equivalent Hypothesis is the Decomposition of the Total Sum of Squares: 
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Example: A multinational company makes cutting fluids that are designed for use with micro-
lubricant applicators and are used in applications such as drilling, tapping and sawing. These non-
misting applicators dispense individual droplets of fluid directly to the cutting tool.  A customer is in 
the process of making a decision regarding which cutting fluid will best suit its production operation.  
Five different types of fluids are available. Suitability is measured by temperature rise and tool life. In 
this example, we are measuring tool life in hours. Five oil types (A, B, C, D, E) are available.  The 
engineer has decided on a sample size of 8 for each oil type.  Hence, this is a single-factor 
experiment with five levels (a=5), and eight replicates(n=8).  

The appropriate mode for this one-way design is a completely randomized version of the 
one-way or single factor ANOVA.  Before we actually run the experiment, we must determine the 
order or the sequence.  Since this is a completely randomized design,  we will assign the sequence of 
tests or experimentation randomly.  To do this, we first note that there will be a total of forty (5x8) 
data points or test results, that is N=40.  We will label each potential observation from 1 to 40, 
starting with the first oil, type A, through the last oil, type E. This labeling does not accord any 
importance or significance to any oil type because we could easily have started from oil type E to oil 
type A. Table 6 shows the oil type and the experimental run number. Please note that the ANOVA 
is about the significance test based on the F-statistic. The test involves the error means square and 
the Treatment means square, both are measures of variance. 

 
Table 6 Oil Type and the Experimental Run Number  

 
 
 
 
 
 

 
 

Using the random number generator (RAND()) in EXCEL, we then generate random numbers 
between 1 and 40 inclusive to determine the test sequence( RAND ( ) * (b−c) + c) 
This function will return random numbers from the interval [c,b] - greater than or equal to c, and 
less than b. Based on this, for example, if the first random number generated is 5, then first 
experimental run will be carried out using oil type A. If the second random number generated is 22, 
then the second run will use oil type C. Table 7 shows the oil type, the corresponding run number 
and the test sequence, as determined by the random number  

Oil Type Experimental Run No. 
A 1 2 3 4 5 6 7 8 
B 9 10 11 12 13 14 15 16 
C 17 18 19 20 21 22 23 24 
D 25 26 27 28 29 30 31 32 
E 33 34 35 36 37 38 39 40 
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Table 7 Oil Type, Run Number and Test Sequence 
  

S/N A B C D E 

1 4.435 3.635 3.845 3.611 4.722 

2 3.341 3.683 3.378 3.796 4.102 

3 3.918 3.587 5.274 3.471 5.013 

4 5.031 3.852 3.333 3.265 3.682 

5 3.843 5.091 3.646 4.479 4.156 

6 4.183 4.287 4.528 4.662 3.652 

7 3.236 4.099 4.381 2.999 4.195 

8 4.214 3.911 3.761 5.044 3.865 

Totals 32.201 32.145 32.146 31.327 33.387 

Mean 4.025 4.018 4.018 3.916 4.173 

Std Dev 0.583 0.495 0.664 0.729 0.481 
        

Table 8 Test Results for the Five Oil Types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 8 is the actual experimental results for each oil type together with their means and standard 
deviation. Based on these results we can perform an ANOVA (table 9) to determine the significance 

 
 

Run 
Number 

Oil 
Type 

Test 
Sequence 

Run 
Number 

Oil 
Type 

Test 
Sequence 

Run 
Number 

Oil 
Type 

1 5 A 15 20 C 29 9 B 
2 22 C 16 24 C 30 31 D 
3 36 E 17 29 D 31 4 A 
4 1 A 8 40 E 32 18 C 
5 10 B 19 37 E 33 25 D 
6 30 D 20 35 E 34 32 D 
7 2 A 21 28 D 35 27 D 
8 14 B 22 17 C 36 26 D 
9 19 C 23 21 C 37 15 B 

10 23 C 24 12 B 38 3 A 
11 11 B 25 16 B 39 7 A 
12 39 E 26 38 E 40 8 A 
13 33 E 27 6 A   

  14 34 E 28 13 B   
  

=Aµ̂ 4.025 
Bµ̂ =4.018 
Cµ̂ =4.018 
Dµ̂ =3.916 
Eµ̂ =4.173 

357386.0=EMS  
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of the of the treatment effect. Any time the statistic of the significant test, namely the value of 
the F-statistic is less than 1, then the test under consideration is not significant. 

Table 9 ANOVA for the Single Factor Model 
  
 
 
 
 
  
 
 
 
 Since F0 is less than 1, then we cannot reject H0.  
      
This implies that the different oil types are not significantly different, therefore, everything else being 
equal, we should select the one with the lowest processing time, oil type D.  
 
8.1.1 Estimation of Model Parameters and Confidence interval  
The single factor model: 
An estimate of the overall mean and the treatment effect can be given as:  
 
 
Then, an estimate of µi would be:  
If we assume that errors are normally distributed, then we can say that the mean response is normal,  
independent and identically distributed where:  
Thus, if σ2 is known, then the Confidence Interval (CI) can be established using the normal 
distribution. We can use MSE as an estimator of σ2, if we assume that the errors are normally 
distributed.  In this case we will base the CI on the student- t distribution  
 
 
For the following problem, we can establish a CI for mean value of oil type D. 3.916=DY for a 90% 

confidence interval t (0.05, 35) = 1.645,   2114.0
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We may also be interested in looking at the difference between two pairs of means. Assume that we 
want to look at the difference between the lowest and highest response, D and E. The 100(1-α)%  
C.I. on the difference of any two treatments means, µE and  µD would be: 
 
 
Why is the variance of the difference between the two means equal to 2MSE/n? Recall that for a 
random variable X and constant c, Var (cX) = c2 Var(X)  
Hence Var(-X) = (-1)2Var(X) = Var(X) 
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Note that since the confidence interval included zero, the difference between the two means is not 
significant. We can demonstrate this by looking at the test of hypothesis between the two means: 
   0:,0: 10 ≠−=− DEDE HH µµµµ , 
   Let α=0.1, α/2=0.05, MSE=0.3574, t0.05, 32=1.645 
Test Statistic:  ( ) ( ) 18598.0
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Reject if: 32,2/αtt > , therefore reject since 0.8598 <1.645.   

As noted earlier, if the numerical value of an F-test is less than unity, then that test statistic is not 
significant. It is instructive to also note that the result from a Confidence Interval analysis will always 
coincide or align with that from the test of hypothesis, with regard to the resulting decision. Recall 
that the two approaches are simply different pathways to perform statistical inference so it should 
not be surprising that they lead to the same decision.  

8.1.2 Model Adequacy Checking 
A major assumption we made in formulating or proposing the model is that it represents the 

underlying relationship in the data or the data structure.  That means that the observations are 
adequately described by the model. If the model is not adequate or appropriate, then the proposed 
model is of no use and the test for the equality of means is of little use. A way to test for the 
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adequacy of the model is to look at the residuals. If the model adequately fits the data, then there 
should be no discerning structure in the residual data.. The proposed linear model is given as: 

 
Examination of residuals can be used to investigate violations of the above assumption as well as 
model accuracy. The residual for observation j in treatment i is: 
Where, ijŷ is an estimate of yij  and is given by:  
 
8.1.3 Plot of Residuals 

A scatter plot of the residual (table 10 and figure 9) reveals no discernible structure.  This 
means that our assumption of a linear model and the error being normally, identically, and 
independently distributed (NIID) is sustained. That means that the errors can be assumed to be 
white noise. 
8.1.4 The Normality Assumption.  

A useful procedure for checking the normality assumption is to construct a normal 
probability plot of residuals.  First, calculate the residuals. The residuals are ranked in ascending 
order and the probability associated with each rank is plotted. We use thefollowing equation to 
compute the probability of occurrence at the ith rank:  
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The plot will be probability, Pi versus the ranked residuals (eij).  If the plot resembles a straight line, 
the assumption of normality is not violated. Points falling far above the line are called outliers. The 
presence of one or more outliers can seriously distort the ANOVA. Potential outliers call for serious 
investigation.  If the errors are truly normal and identically distributed, then the normal plot will be a 
straight line (see figure 10). 

Table 10: Residuals 
 

A B C D E 

-0.415 0.383 0.173 0.305 -0.549 
0.679 0.335 0.640 0.120 0.071 
0.102 0.431 -1.256 0.445 -0.840 

-1.011 0.166 0.685 0.651 0.491 
0.177 -1.073 0.372 -0.563 0.017 

-0.163 -0.269 -0.510 -0.746 0.521 
0.784 -0.081 -0.363 0.917 -0.022 

-0.194 0.107 0.257 -1.128 0.308 

ijA yy −  ijB yy −  ijC yy −  ijD yy −  ijE yy −  
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Table 11 Ranked Residuals 

  
s/n eij Pi s/n eij Pi 
1 -1.256 0.0125 21 0.12 0.5125 
2 -1.128 0.0375 22 0.166 0.5375 
3 -1.073 0.0625 23 0.173 0.5625 
4 -1.011 0.0875 24 0.177 0.5875 
5 -0.84 0.1125 25 0.257 0.6125 
6 -0.746 0.1375 26 0.305 0.6375 
7 -0.563 0.1625 27 0.308 0.6625 
8 -0.549 0.1875 28 0.335 0.6875 
9 -0.51 0.2125 29 0.372 0.7125 

10 -0.415 0.2375 30 0.383 0.7375 
11 -0.363 0.2625 31 0.431 0.7625 
12 -0.269 0.2875 32 0.445 0.7875 
13 -0.194 0.3125 33 0.491 0.8125 
14 -0.163 0.3375 34 0.521 0.8375 
15 -0.081 0.3625 35 0.64 0.8625 
16 -0.022 0.3875 36 0.651 0.8875 
17 0.017 0.4125 37 0.679 0.9125 
18 0.071 0.4375 38 0.685 0.9375 
19 0.102 0.4625 39 0.784 0.9625 
20 0.107 0.4875 40 0.917 0.9875 
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Figure 10 Residual Scatter Plot 
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Figure 2   Normal Plot of Residuals 

8.2 Comparison among Treatment Means 
 After H0  is rejected, we need to find exactly which means differ. For this, comparisons of 
groups of treatment means is quite be useful. 
8.2.1 Multiple Comparison Methods: Contrasts 
Some sample multiple comparison hypotheses are: 
 
   
 
The above hypothesis could be used to investigate an appropriate linear combination of treatment 
totals. In general, multiple comparisons will imply a linear combination of treatment totals such as:                    
as:                        with the restriction that: 
C is called a contrast. Sum of Squares of a contrast C is calculated as:       
which has a single degree of freedom 
8.2.2 Orthogonal Contrasts  
 Contrasts in general or useful for multiple comparisons. Orthogonal contrasts are set prior 
to the experiment and are for preplanned comparisons. The contrasts are specified before actually 
running or acquiring the data because certain levels or combination of levels of a factor are of 
special interest. If on the other hand the comparison are decided upon after the data has already 
being collected, then such a situation is called snooping or "data snooping".  

 For balanced design (all sample sizes are equal), two contrasts with coefficients {ci} and {di} 
are orthogonal if:       

For unbalanced design (sample sizes are not equal) if 
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 For 'a'  treatments, there are maximum of a-1 orthogonal contrasts and they are NOT 
unique. There are many ways to choose orthogonal contrasts. For example, for three treatments 
(a=3), there are a maximum of two (2) orthogonal contrasts. 

  y.1 y.2 y.3 
C1 -2 1 1 
C2 0 -1 1 

 
To show that these contrasts are orthogonal, we multiply the coefficient of each contrast and sum. 
The sum should be zero. That is: (0)(-2)+(-1)(1)+(1)(1)=0. 
 Please note that since the orthogonal contrasts are formed from the linear combinations of 
the treatment means or treatment totals, the sum total of the Sum of Squares of the Orthogonal 
Contrasts must equal the Sum of Squares of the treatment that is:  
 ( ) )(TreatmentSSContrastsOrthogonalSS =∑  

In our oil type example with five levels, the maximum number of orthogonal contrast is (a - 1 =4), 
since a = 5 in this case). One such possible set of  four orthogonal contrast is as shown in table 12.  

 Table 12 Four Orthogonal Contrasts for Five Treatment Levels 
  

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F0 Sig 

Between Treatments 0.271069 4 0.06776725 0.189619 n.s 
 Orthogonal Contrasts       
 4μA=μB +μC +μD +μE 0.0003 1 0.0003 0.0008 n.s 
 μC= μD 0.04192 1 0.04192 0.1172 n.s 
 μB = μE 0.0964 1 0.0964 0.2697 n.s 
 μC +μD = μB + μE 0.1324 1 0.1324 0.3705 n.s 
Error (within 
treatments) 12.5085 35 0.357385714    
Total 12.77957 39     

    
Contrasts 

Hypothesis     y.A y.B y.C y.D y.E 

H0:   4μA=μB +μC +μD +μE 
 

C1 4 -1 -1 -1 -1 
H0:   μC= μD 

 
C2 0 0 1 -1 0 

H0:   μB = μE 
 

C3 0 1 0 0 -1 

H0:   μC +μD = μB +μE   C4 0 -1 1 1 -1 

110

112

1

1

+−=

++−=

∑

∑

=

=

a

i
i

a

i
i

c

c  

Table 13 ANOVA Table for the Treatment and Orthogonal Contrasts 
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Computation of  SS for the Contrasts: 
C1=4(32.201)-1(32.145)-1(32.146)-1(31.327)-1(33.387) = -0.201,  ( ) 0003.0

)20(8
201.0 2

1
=

−
=CSS   

C2=1(32.146)-1(31.327) = 0.819, ( ) 04192.0
)2(8

819.0 2

2
==CSS   

C3=1(32.145)-1(33.387) = -1.242, ( ) 0964.0
)2(8

242.1 2

3
=

−
=CSS  

C4=1(32.146) + 1(31.327)-1(32.145)-1(33.387)= -2.059, ( ) 1324.0
)4(8

059.2 2

4
=

−
=CSS  

  From the contrast analysis (see table 13) we come to the same conclusions we arrived at 
earlier. There are no significant variations between the different levels of factors. In other words, the 
oil types are not considerably different in terms of performance. Please notice that we arrived at this 
conclusion without even specifying the alpha level or the Type I error. Why?  If the F values are less 
than unity anytime we carry out an ANOVA test, , we know that, regardless of the Type I error 
specified, the test is not significant. Please note that the combined sum of squares for the orthogonal 
contrasts must equal the treatment sum of squares. 
8.2.3 Schefee's Test for any and all Contrast   
 Sometimes we do not know which mean comparisons would be needed before data has 
been collected from an experiment. It is usually after looking at the data, after the fact, ( 'data 
snooping' ) that it become clear which pair of means or linear combination of means  need to be 
examined.  Such contrasts could be as little as one or more than the number of treatment levels and 
thus may not be orthogonal.  We know that in the case of orthogonal contrasts the maximum is (a-
1) for ('a') treatment levels.  When the desire is to examine any and all contrasts that are not 
necessarily orthogonal, the way to do that is by using an approach proposed by Scheffe’s in 1953 
which has come to be known as Scheffe's Test.  Thus, Scheffe's method applies to the set of 
estimates of all possible contrasts among the factor level means; and, that number could be 
theoretically (but not possibly) infinite.  The Scheffe's test is conducted on each contrast. The 
estimated variance or (the Mean Square Error from the ANOVA table) for the contrast is given by: 

∑∑
==

=⇒=
a

i i

ik
EC

a

i i

ik
EC n

C
MSS

n
C

MSS
kk

1

2

1

2
2  

For the Scheffee's test, the critical value to be compared to the contrast C is given by:  

                                 ( ) ( ) ( )aNaCk FaSS
k −−−= ,1,, 1 αα  

Example for two contrasts(k=2): 
H0:  4μA=μB +μC +μD +μE,  Hence,  C1 = 201.04 −=−−−− ••••• EDCBA yyyyy  

H0:  μC +μD = μB + μE ,       Hence,  C2 = 059.2−=−−+ •••• EBDC yyyy  

Reject if kK SC ,α> ,   α=0.05, nA=nB =nC=nD=nE=8 
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( ) ( ) 9452.08935.0
8
203574.0

1

2

==





== ∑

=

a

i i

ik
EC n

C
MSS

k

 

( ) ( ) 4227.01787.0
8
43574.0

1

2

==





== ∑

=

a

i i

ik
EC n

C
MSS

k
 

For C1, ( )⇒<=
1

9452.0201.01 CSC Do not Reject 

            For C2, ( )⇒>=
1

4227.0059.22 CSC  Reject. Those pairs of means are not equal 
 
Single Factor: Restrictions on Randomization (Randomized Block Designs)  

Most experiments contain nuisance factors that produce variability, ultimately affecting the 
response variable by inflating the MSE(the Error Variance). This is of no particular interest to the 
engineer. If a nuisance factor is known but uncontrollable, then an approach that is beyond the 
scope of this course, namely ANCOVA--Analysis of Covariance, may be used to extricate the effect 
of the nuisance factor from the results. If a nuisance factor is unknown and uncontrollable, then 
randomization can be used to mitigate or even out its effect on the results. If, however, the nuisance 
factor is known and controllable or can be manipulated, then the scheme of "Blocking" can be used 
to reduce or eliminate its effect on the response or the estimate of the error variance.  
 In the single factor, completely randomized design we looked at earlier, the experimental 
units were randomly assigned. In such a case, any variation from sample to sample (within sample 
variation) appeared in the error variation as measured by MSE. In many cases, the variability can 
come from the large heterogeneity in the experimental units that results in reduced sensitivity or 
ability to detect treatment difference because variations across the experiment units have inflated 
MSE.   
 As an example, due to the time required to complete an experimental trial, it would be 
impossible to complete the data extraction during the day shift. Thus, management decides to collect 
data across two shifts (day and night shifts). If the data collection is completely randomized and 
analyzed as such t any differences due to the different shifts will be masked because it would be 
lumped with the MSE thereby inflating it.  A better and more practical approach is to 'block off' the 
variation due to these units (shifts) by randomly varying them over a wider range in smaller or more 
homogeneous block (shifts) in such a way that their variability can be eliminated from MSE.  In a 
randomized block design (see figure 12), the experimenter divides treatments subgroups--blocks, 
such that the variability within blocks is less than the variability between blocks.  This type of design 
that would extract the blocking effect from the true experimental error is the randomized complete 
block design (RCBD) in which each block 'completely' contains all the treatments. Within each 
block, the treatments are assigned at random. Therefore, rather than complete randomization, the 
blocks are used as a form of restriction on randomization. Again, a design that utilizes this strategy 
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of blocking is called the Randomized Block Design. There are two type, (a) Balanced Complete and 
(b) Balanced Incomplete design. 
9.1 Randomized Complete Block Design (Balanced Complete Design) 
As indicated earlier, this is a design in which each level of treatment (the single factor) occurs once 
and only once in each block.  We are interested in testing the equality of the treatment means. Thus 
the hypotheses of interest are: Ho: µ1 = µ2 = … = µt ,  H1: at least one µ1 ≠ µ2 

To test the equality of treatment means, we would use the test statistic: 
E

Treatment

MS
MS

F =0
 

Where F0 is distributed as )1)(1(),1(, −−− baaFα  

if the null hypothesis is true, that is, if H0 is true The critical region is the upper tail of the F 
distribution, and we would reject H0 if: )1)(1(),1(,0 −−−> baaFF α . The analysis is better captured in the 

ANOVA table 14 as shown.   
Figure 12 Layout of Complete Block Design with Randomization 

 

 

 

 

 

 

 

 

 

 

   

  

   

  
 yij = µ + τi + βj + εij 
 yij = observation in the ith row,  jth column 
 µ = overall mean, 
 τi =ith treatment effect, 
            βj = jth block effect,  
 εij = random error. 
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Where F0 is distributed as: )1)(1(),1(, −−− baaFα  

if the null hypothesis is true, that is, if H0 is true, the critical region is the upper tail of the F 
distribution, and we would reject H0 if: )1)(1(),1(,0 −−−> baaFF α . 

The analysis is better captured in the (ANOVA) table as shown.   
Table 14 ANOVA Table for Randomized Complete Block Design 

Sources of 
Variation 

Sum of Squares Degrees of 
Freedom 

Mean Square F0 

Treatment 
SSTreatment=

tb
y

y
b

t

i
i

2
..

1

2
.

1
−∑

=

 
 
t-1 )1( −t

SSTreatment
 

E

Treatment

MS
MS

 

Blocks 
SSBlock= tb

y
y

t

b

j
j

2
..

1

2
.

1
−∑

=

 
 
b-1 )1( −b

SSBlock  
E

Block

MS
MS

 

Error 
(Residual) 

SSE (obtained by 
subtraction) 

 
(t-1)(b-1) E

E MS
tb

SS
=

−− )1)(1(
 

 

Total 
SST=

tb
y

y
a

i

b

j
ij

2
..

1 1

2 −∑∑
= =

 
 
(tb-1) or  N-1 

  

 
Example: An experiment to determine the amount of warping (mm) of copper plates was 
conducted in 4 different laboratories (Lab 1, Lab2, Lab3, Lab4) using four copper specimens with 
different percent of copper compositions (A, B,C, D). 

Table 15 Data for the Randomized Complete Block Design 
 
 

 

  

  

   

 
( )

1354,5.14681

5.46211,7444

842724/

2
..

1

2
.

2
..

1

2
.

2
..

1 1

2

2

=−−==−=

=−===−=

==

∑

∑∑∑

=

== =

••

BlocktreatTE

b

j
jBlock

a

i
icoltreat

a

i

n

j
ijTotal

SSSSSSSS
N
y

y
n

SS

N
y

y
n

SSSS
N
y

ySS

NYCF
 

 
SPECIMEN(Treatment) 

 LABORATORY A B C D TOTALS 
Lab1 264 208 220 217 909 
Lab2 260 231 263 226 980 
Lab3 258 216 219 215 908 
Lab4 241 185 225 224 875 
TOTALS 1023 840 927 882 3672 
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Microsoft EXCEL was used to compute the ANOVA table.  To use EXCEL for ANOVA, 
you will have to install ‘The Analysis ToolPack’. Once you install it as an ‘add-in’, you pull down the 
Data window menu, which then takes you to Data Analysis. For this analysis, you will choose the 
option: ‘ANOVA: Two-factors without replication.’ If you want the labels to show, you will check 
the ‘labels’ button.  In this analysis the treatments are significant but the blocks are not at 
α=0.05 based on the computed F values on the ANOVA table. The critical value from the F-
table, F(0.05; 3,9) = 3.8625. 

 
Table 16 Single Factor Two-way ANOVA with Restriction (block) on Randomization Below 

ANOVA: One-Factor With Blocking 
    SUMMARY Count Sum Average Variance 

  Lab1 4 909 227.25 626.25 
  Lab2 4 980 245 368.6667 
  Lab3 4 908 227 430 
  Lab4 4 875 218.75 566.9167 
  

       A 4 1023 255.75 102.9167 
  B 4 840 210 368.6667 
  C 4 927 231.75 440.9167 
  D 4 882 220.5 28.33333 
  ANOVA 

      Source of Variation SS df MS F P-value F crit 
Rows (Labs-Block) 1468.5 3 489.5 3.253693 0.073833 3.862548 
Columns (specimen) 4621.5 3 1540.5 10.23966 0.002929 3.862548 
Error 1354 9 150.4444       
Total 7444 15         

 
There are other Single Factor designs but with two, three or even four restrictions on 
randomization. The idea is to slowly and carefully get the sum of squares for the factor and the 
restrictions (which are really like factors in terms of computation). The ANOVA table is populated 
the same way and looks exactly the same except that there more terms in the table.  
9.2 One Factor With More Than One Restrictions On Randomization 
To wrap up this section on restrictions on randomization, we will quickly look at a situation where 
we have one factor with two restrictions on randomization, namely the Latin Square Design.   
 

9.2.1 Latin Square Design.  The Latin Square is a 4x4 symmetric design with two restrictions 
on randomization where each treatment occurs once, and only once, in each row and in each 
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column.   Thus, the result is a 3-way ANOVA table (Two terms for the two blocks and one term for 
the Treatment) 

Table 17 A 4x4 Latin Square Design 
 
    

    

    

    

   

9.2.2 The Greco Latin Square Design.  
 The Greco Latin Square Design is a Latin Square Design with one additional restriction on 
randomization. In other words, instead of two restrictions, it has three restrictions.  The ANOVA 
scheme is the same except for one additional term in the 4-way ANOVA table.  In what follows, we 
show the restrictions (3 at 5 levels each), the data table, the partial sums, and the Sum of Squares 
(SS) for each term in the model, including the SS Total.  The degrees of freedom are determined the 
same way as always and are as shown. What is now left is to show the F values for each term in the 
ANOVA table to determine significance (table 18). 
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9.3 Randomized Incomplete Block Design 
In some randomized block design, it may not be possible to apply the treatment in every 

block. An incomplete block design is one in which there are more treatments than can be put in a 

 
Machines (Block) 

Position 1 2 3 4 

1 C D A B 
2 B C D A 
3 A B C D 
4 D A B C 
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single block. In a balanced incomplete block design, every pair of treatments occur the same number 
of times throughout the experiment.   Consider a situation where we have four operators 
(treatment) and four working days for an assembly task with time in seconds.  However, at any given 
day out of the four working days, the schedule calls for only three operators to be at work. In such a 
case, the block (day) would be incomplete because it only has three treatments in it. The data in the 
table has been normalized bysubtracting 850 from the actual data, just for ease of hand calculation 

 
.  Table 18 Data layout and Computation (below) for the Greco Latin Square Design 

  
Table 19 Data for Balanced Incomplete Block 

 
 

 

 

 

 

 

3 RESTRICTIONS ON RANDOMIZATION DF 
TREATMENT (k) A B C D E 4 
BATCHES (i) I II III IV V 4 
ORDER OF RUNS(j) 1 2 3 4 5 4 
OPERATOR (l) α β ɣ δ ε  4 

       
 

ORDER(j) 
 BATCH (i) 1 2 3 4 5 TBatch(i) 

I Aα (4) Bβ (1) Cɣ(2) Dδ (2) Eε(2) 11 
II Bδ(2) Cε(2) Dα(3) Eβ(2) Aɣ(3) 12 
III Cβ(1) Dɣ(2) Eδ(3) Aε(3) Bα(3) 12 
IV Dε (3) Eα(4) Aβ(3) Bɣ(3) Cδ(3) 16 
V Eɣ (2) Aδ(1) Bε(3) Cα(3) Dβ(2) 11 

TOrder(j) 12 10 14 13 13 62 
TTreatment(k) A B C D E Total 

 
14 12 11 12 13 62 

TOperator α β ɣ δ ε Total 

 
17 9 11 13 12 62 

 
Operators (Treatment) 

 DAYS A B C D Ti· 
M -7 -3 -5 - -15 
T 10 - 7 9 26 
W - 3 3 -3 3 
R -1 -7 - -3 -11 

Tj· 2 -7 5 3 T•• =3 
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We will use a new notation to make it easier to do the analysis. Define: 
 b= number of blocks in the experiment (b = 4) 
 t =number of treatments in the experiment (t = 4)  
 k= number of treatments per block (k = 3) 
 r=number of replications of a given treatment throughout the experiment (r = 3) 
 N= total number of observation = (b)(k) = 12 
 λ= number of times each pair of treatments (say A & B) appear together throughout the 
 experiment 

 
( ) 2

3
)2(3

1
)1(

==
−
−

=
t
krλ . 

Check if A & B appear together on Monday and on Thursday. A & C appear together on Monday 
and Tuesday. A & D appear together on Tuesday and Thursday. You confirm the rest the same way. 
We now calculate the Sum of Squares 

Note: Correction Factor CF: ( ) 75.0
12
3 22

=== ••

N
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SS Total: ( ) 25.39875.0399
12
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2
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Unadjusted SS (block): It is uncorrected or unadjusted because we ignored the missing treatments. 
Unadjuated SS(Block): 
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Where nij = 1 if treatment j appears in block i and 0 if treatment j does not appear in block i.  
Note that •∑ i

i
ijTn , is merely the sum of all block which contain treatment j. 

Q1=3(2)-[- 15+26-11]=6-0=6, Q2=3(-7)-[-15+3-11 ] =-21+23=2 
Q2=3(-7)-[-15+3-11 ] =-21+23=2 
Q3=3(5)-[-15+26+3 ] =15-(14) =1,  Q4=3(3)- [26+3-11 ] =9-18= -9  
The sum of these Q values will be zero because they form a contrast whose sum of squares 
completely partition the treatment sum of squares, as we saw in the case of orthogonal contrasts. As 
a result, we did not subtract CF, because it was taken care of during the adjustment for blocks.  
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unadjusted for due to the missing treatment values.  In the case of a symmetric balanced incomplete 
randomized block design where t = b, the block sum of squares may be adjusted just like we adjusted 
the treatment sum of squares and then we can test for its significance.  However, we still cannot 
test for both at the same time.  We will test for one, ignore the other, and then test for the 
other.   In our example, since t = b, we can test for blocks by repeating the analysis and now SS 
treatment will be uncorrected. You will notice that the value of SS (treatment) would be larger than 
what we have now. 

Table 20 ANOVA for Balanced Incomplete Design (Treatment Adjusted) 
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    Q'1=3(-15)- [ 2-7+5]   =  -45+0 =-45 
    Q'2=3(26)  - [2+5+3]  =  78-10  = 68 
   Q'3=3(3)    - [-7+5+3] =   9-1    = 8 
   Q'4=3(-11)- [2-7+3]    =   -33+2=-31 
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Table 21 ANOVA for Balanced Incomplete Design (Block Adjusted) 
    

    

    

     

  

Source     SS Df MS F 
Block 
(Unadjusted) 

  
(342.92) 3 - 

 Treat (adjusted) 5.08 3 1.69 <1(n.s.) 

Error 50.25 5 10.05   

TOTAL 398.25 11 
  

Source     SS DF MS F 

Block (adjusted) 319.75 3 106.58 10.6  ** 

Treat (unadjusted) (28.25) 3 - 
 Error 50.25 5 10.05   

TOTAL 398.25 11 
  

( )31868450 −++−==∑ iQ  

Significant at α=0.025 
F0.025, 3,5 = 7.76 
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SUMMARY 
 Design of experiments is an activity that every Engineer should take seriously.  Engineers are 
called upon every day to make decisions regarding programs, processes and systems that have 
significant implications on the safety and well-being of society, be they chemical processes, the 
environment, infrastructure, machinery and equipment, or others.  While Engineers are known for 
sound and fact based judgment, that may not be enough, especially when they are called upon to 
make decisions regarding variables and factors with uncertainties that are mostly random and of 
questionable predictability. Those situations require an understanding of the formal schemes and 
structures necessary to deal with variability, bias, and randomness.  
 In this course, we have dealt with some of the common and vexing issues related to the 
design of experiment under the overarching themes of Planning, Design, and Analysis. The major 
issues that require emphasis and particular attention regarding good experimental test plans include: 

• A true experiment is one in which certain independent variables are manipulated and their 
levels assigned at random in order to determine their effect on one or more response 
variables. The notions of Manipulation and Randomization are essential for a true 
experiment in order to infer cause and effect. 

• A major goal of any experiment is to determine the effects of the factors and, more 
importantly, to ensure that the estimate of pure error is not masked by nuisance factors. We 
have discussed the need for Blocking and Randomization to reduce the effect of nuisance 
factors and noise.   

• There are experiments, namely, Quasi-Experiments, where it is not possible to Randomize.  
For example, in an attempt to determine the effect of two methods of in-plant instruction, it 
may not be physically possible to randomly assign the workers to the two instruction types 
because the classes may have been formed by shifts,  division or operation.  In this case, a 
flip of the coin can determine which shift or group goes to which method of instruction. It 
is also important, however, in this type of experiment, to show that the groups are similar.  

• Sometimes, the engineer is forced to deal with an ‘Ex-Post-Facto’ situation.  An ‘ex-post-
facto’ is a situation where the engineer has little to do with the independent variables.  The 
independent variable would already have been acted upon and the engineer simply examines 
the results or the effect of the factor (x)on the response (y). As an example, suppose the 
effect of rainfall and sunshine (independent variables) on the yield of a plot of land is of 
interest. It is clear that although both (rainfall and sunshine) are independent variables, they 
are not independent in the pure sense of the word because no manipulation of the variables 
would be possible, unless of course the engineer happens to be  a rainmaker and/or a sun 
charmer. Thus, inferences about these situations must be made with a lot of care.  

http://www.suncam.com/


 
The Design and Analysis of Engineering Experiments I 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 48 of 48 
 

• Randomized Complete Block Designs (RCBD) are single factor designs with one or more 
restrictions on randomization. They are important designs that help to reduce the 
confounding effect of nuisance factors on the error variance. Randomized Incomplete 
Blocks are very practical designs that arise from situations that any Engineer may encounter 
during the process of acquiring data for engineering decisions.  We provide a different 
notation and an approach to assist in solving this practical engineering design problem. 
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