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1.0 Introduction: In this course, the design and applications of Proportional -plus- Integral -plus- 
Derivative (PID) controller’s is discussed. PID control is a technique used extensively in feedback 
control systems. Its origins date back to the 19th century, being used for governor speed control, 
and since then in numerous applications with a wide variety of actuators and sensors. The 
controller is simple structure; being the sum of three terms as the name implies. Its configuration 
is illustrated in Figure 1.0. The PID structure provides for a fairly-wide range of tuning adjustment 
in a feedback control loop, especially for relatively simple processes. Some familiarity with 
feedback control may help in providing a better understanding of the course material. References 
[1, 2] provide excellent coverage of PID controller design as included in this course. Essential 
aspects of feedback control are included, but one might also review references on the subject [3, 
4] or Suncam Course 182.  
 

 
Figure 1.0 Functional Block Diagram PID Controller 

 
PID controllers are used in many control applications; possibly being the most common form of 
feedback control compensation. With feedback control, the output state of a physical system to be 
controlled—referred to as the plant, process, or load—is measured by a sensor. The measured state 
is fed back and compared to a desired state. The terminology for the desired state varies depending 
on the application; often termed set point in process control, a reference signal in circuit design, 
or a command input from an outer control loop. The controller determines the difference between 
the measured and desired state; the control loop error, to generate a control signal that reduces the 
error. This equates to a negative feedback control loop; central to feedback control theory. A PID 
uses the error, it’s integral and derivative to derive a control signal driving the error to a null state. 
The controller can be structured in many configurations; P-only, PI, PD, PID, plus others to be 
discussed. PID control is central to most process control systems; but can also be found in 
numerous applications other than process control ranging from positioning control loops to 
pointing, tracking and platform stabilization control loops. The PID can also be integrated with 
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higher level control strategies such as model predictive control, adaptive controllers and fuzzy 
logic control described in Part 2 of the course.  
 
The versatility of the PID may reside is a fairly-simple control structure, easy to implement in 
software or hardware, offering loop gain adjustment, an integrator to reduce or null servo error, 
and a derivative the provides phase lead to improve loop stability or act as a predictive element. 
An example of a feedback control system is an industrial process, shown in Figure 2.0, where it is 
desired to maintain a working fluid at a constant temperature.  

 
Figure 2.0 Fluid Temperature Control Process 

 
Fuel is input to a combustion chamber, which heats the fluid. A control valve is the actuator 
controlling how much fuel is input to the chamber; being adjusted based upon a control signal 
from the controller. A temperature sensor is the feedback sensor that measures the temperature of 
the working fluid at the output of the combustion chamber. The measured temperature is fed back 
to the controller and compares it to the desired temperature or set point, calculating a difference or 
error. If the temperature is less than the set point, the error could be used by a PID controller to 
force more heat into the room. The proportional and integral gains will set the response time. As 
the set point is reached, the integrator will help null the error and the derivative term reduce any 
overshoot shutting down the heating or cooling source to the room.  
 
In this course, PID control design will be presented from the perspective of classical control design 
techniques. Control methodology is sometimes divided into classical and modern control methods; 
effectively different approaches to solving a control problem, each having their own advantages 
and disadvantages. Classical control deals directly with the differential equations that describe the 
dynamics of a plant or process, transforming them into frequency dependent transfer functions for 
analysis. The transfer function is the ratio of two frequency dependent polynomials whose roots 
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describe the response of the plant in a frequency domain. The controller or compensator, such as 
the PID controller discussed in this course, shapes the closed feedback loop response for a given 
plant response, to achieve the control performance objectives. Modern control theory uses State 
Space methods to evaluate the response of a system as well as generate the control for it.  This 
relies heavily on linear algebra and matrix theory. The approach is very helpful when solving 
problems with systems that have high order dynamics or multi-input, multi-output problems.  
 
Control system design and analysis relies heavily on mathematics. Before focusing on the PID 
controller design, the next three sections will provide an overview of general feedback control 
system architecture, relationships that govern any controller design, and the mathematics of 
formulating of the control system dynamics in both the time and frequency domains.  
 
2.0 Feedback Control Block Diagram: The feedback control system block diagram provides both 
a visual as well as a basis for the mathematical representation of the feedback control system. It is 
an important part of the control system design and analysis. In general, the feedback control block 
diagram will be complex—incorporating many elements and several feedback loops. To describe 
just the basic elements, a very simple block diagram is shown in Figure 3.0. 

 
Figure 3.0 Basic Feedback Control Block Diagram 

 
This simple loop includes a controller (C), plant (P), and feedback sensor (H). The inputs are the 
command input (cmd in), disturbances (d) and sensor noise (n). The command, which is the desired 
plant output, is the reference variable and sometimes denoted as set-point in process control 
applications. It is applied to the input summing junction and compared with the measured plant 
output. The servo error between the command and measured output is calculated and fed to the 
controller (C); a PID is a specific type of controller (C -> PID) as described in this course. The 
PID controller generates the drive signal to the plant that reduces the error until the command input 
equals the actual output or remains within a desired offset. In an actual control loop design, the 
PID could be the primary shaping function for the control loop, however, other compensators such 
as lead, lag, or lead-lag may be required to obtain the stability margins desired; compensating for 
the lag of specific control loop components. 
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The dynamics of each block can be expressed in the time or frequency domain. The time domain 
is very useful for simulating the loop response, and evaluating performance as a function of time. 
A set of differential equations—which can include non-linear terms—are used to describe the 
dynamics for each block. The frequency domain is excellent for linear analysis. The gain of each 
element can be characterized as a function of frequency; effectively making each element a 
frequency dependent gain. The output response can be evaluated as a function of frequency, and 
the controller adjusted in the frequency domain, to improve the loop performance.  
 
3.0 Time and Frequency Domain Representations of Loop Dynamics: The plant dynamics are 
normally described by a set of differential equations and functions for elements that are non-linear 
in time or multi-variable dependencies. If the plant is linear or can be linearized about an operating 
point, the frequency domain response can be described by using the Laplace transform or a 
differential operator. The frequency domain is important for analysis and design; as used in 
ensuing sections. 
 
3.1 Frequency Domain Definitions: The Laplace transform of a time dependent variable f(t) is 
defined as: 

∫
∞

⋅−=
0

)()( dtetfsF ts  

This integral exists for the complex variable s=σ+jω with any real part σ>0. The variable ω=2πf 
where ‘f’ is frequency in hertz. Differentiating the right-hand side of this expression n times with 
respect to time, results in the important relationship: 

∑∫
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∞
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1

0

)0()()(  

A differentiated function in time is algebraically related to its transform as L[fn(t)]->snF(s) where 
‘L’ denotes the Laplace transform. The summation term on the right accounts for the initial 
conditions of each differentiated term. For frequency analysis, initial conditions are often assumed 
to be zero so that: 
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0

==∫
∞

⋅− sFsdtetf ntsn  

Two important operator relationships, as listed in Table 1.0, can be derived from this expression. 
 

Table 1.0 Laplace Transform Derivative and Integral 
Operator Transform Transform Notation Notes 
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0
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The integral relation is obtained, noting the derivative of the integral is the function, so that: 
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The significance of these relationships is they allow differential equations to be converted to 
algebraic expressions—similar to the use of differential operators. 
 
The inverse Laplace transform can be used to convert a frequency domain function back to one in 
the time domain. The inverse transform is given by: 

∫
∞+

∞−

⋅

⋅⋅
=

jc

jc

ts dsesF
j

tf )(
2

1)(
π

 

This complex integral is evaluated along the path s=c+jω in the complex plane from c-j∞ to c+j∞ 
where c is any real number > σ for which the path c+jω lies in the region of convergence of the 
transform F(s). Although a somewhat complicated definition, most control textbooks or 
engineering references have very thorough tables of both the Laplace transform and its inverse 
transform for numerous functions—so one need not evaluate the transform or its inverse directly. 
It is also important to note that although the definition of the Laplace variable is s=σ+jω, when 
performing frequency domain analysis, the variable will be equated to s=jω where ω=2πf.  The σ 
term is assumed zero since for frequency domain analysis a function is being evaluated based upon 
its response to periodic sinusoidal signals. The real axis (σ) in the s-domain represents an 
exponential decay or growth factor not relevant for this analysis.  
 
3.2 Evaluation of F(s): The frequency dependent function F(s) is a complex number that can be 
expressed in terms of a magnitude and phase or real and imaginary parts as: 

ωjs;(F(s))j(F(s)) =e|F(s)=|F(s) jθ =⋅+⋅ ImRe  
The complex function is quantified in terms of its magnitude and phase as defined in Table 2.0. 
 

Table 2.0 Complex Function Definition 
Function Symbolic Expression Quantitative Expression 

F(s)   e|F(s)| jθ⋅  = ))sin)cos (θ|F(s)|j(θ|F(s)| ⋅⋅+⋅  
partreal  (F(s))Re  = )cos(θ|F(s)|⋅  

partimaginary  (F(s))Im  = )sin (θ|F(s)| ⋅  
magnitude  |F(s)|  = 22 ImRe (F(s))+(F(s))  

phase  ))(( sFΦ  =  (F(s))(F(s))/a ]Retan[Im  
 
For frequency response analysis F(s) could represent the closed loop transfer function (CLTF) or 
open loop transfer function (OLTF) of the control system. Referring to Figure 3.0, these are derived 
in section 4.0 and given by: 
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As the transfer function is the ratio of two frequency dependent polynomials, the three transfer 
functions can also be written as the ratio of a numerator (N) and denominator (D) polynomial: 
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The corresponding CLTF and OLT are then given by; 
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Typically, the plant for PID applications is a low order low gain stable transfer function. The 
controller provides most of the gain for the loop as required per the performance specification. 
Generally, one desires unity gain feedback so that scaling associated with the feedback sensor is 
normalized to one by an inverse scaling constant. If feedback is not unity gain, the quantity H(S) 
will scale the closed loop gain as can be seen in the previous expression. The CLTF and OLTF are 
used to evaluate the control loop response and stability, and are described in more detail in the 
next section. The system response can be evaluated via Bode, Nyquist, or Nichols plots and 
analysis. Bode analysis plots the magnitude and phase of the OLTF and CLTF to evaluate response 
and is relatively straightforward to understand. The OLTF is plotted in terms of its open loop gain 
(OLG) and the open loop phase. Bode stability criteria defines two critical frequencies; the gain 
crossover frequency, fGC, which is the frequency at which the OLG crosses one and the phase 
crossover frequency, fPC, which is the frequency at which the OLTF phase, Φ, crosses -180°. A 
stable phase margin is the amount that the OLTF phase angle is > -180° when the OLG = 1 at the 
gain crossover frequency. The gain margin is the magnitude of the OLG relative to unity gain 
when the OLTF phase goes through -180° at the phase crossover frequency. These quantities are 
summarized in Table 3.0. 
 

Table 3.0 Bode Stability Criteria 
Stability Metric Expression Stability Criterion 

Phase Margin (PM) )]([180 GCfOLTFΦ+°=  
0180)]([ >°−>Φ PMorfOLTF GC

@OLG=1 

Gain Margin (GM) )(
1

PCfOLG
=  11)( >< GMorfOLG PC  

 
The gain margin and phase margin are normally specified in the performance requirements for 
a control loop. The gain margin is often expressed in decibels, or: 
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))((20)(20 PCdB fOLGLogGMLogGM ⋅−=⋅=  

It can be noted that, given the OLTF satisfies the Bode criterion, the loop is stable if fGC < fPC. As 
the Bode plot is used often in the course, an example is shown in Figure 4.0 for an OLTF given 
by: 
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f
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The solid lines are for the open loop gain, which is scaled in units of dB on the right-hand side of 
the plot; and the dotted lines are for the open loop phase scaled in degrees on the left-hand side of 
the plot. The plot of the OLG is in solid black with a line at 0 dB in solid light blue. Each pole 
contributes -20 dB per decade of slope to the magnitude plot and each zero +20 dB per decade of 
slope. The quadratic term contributes -40 dB per decade of slope. The OLTF phase is the dotted 
red line and a line at the -180° reference in dotted dark blue. Each pole contributes -90° of phase 
lag to the phase plot and each zero +90° of phase lead. The quadratic term contributes -180° of 
phase lag. As shown in the figure, the system has a gain crossover frequency at 0.05 Hz, a PM~30° 
and a GM~-23 dB and is stable based upon the Bode stability criterion. This is a low bandwidth 
system and the relatively low PM—indicating some oscillatory response can be expected.  
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Figure 4.0 Example Bode Plot for Example 
 

3.3 Time to Frequency Domain Conversion: Using the Laplace transform, the relationship between 
the time and frequency domain for a first and second order plant can be evaluated as shown in 
Table 4.0. For both plants, to shorten notation x(t) equals the plant input and y(t) the output. The 
table describes the differential equation, its frequency domain conversion and the plant and output 
response. For the 1st order plant the term τ is the plant time constant while KS is the scaling factor.  
 

Table 4.0 1st and 2nd Order Time and Frequency Domain Representations 
 1st Order Plant 2nd Order Plant 
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For the 2nd order system, ζ is the damping constant and ω0 the natural frequency of the plant. 
This general procedure can be applied to a differential equation of any order. 
 
4.0 Key Feedback Loop Relationships: Each block in the feedback control loop block diagram, 
Figure 3.0, can be expressed in the frequency domain using the Laplace transform described in the 
last section, assuming all constraints are met. These relationships are common to all linear control 
loops including ones using a PID controller, discussed herein. In the frequency domain, blocks can 
be treated algebraically with each element of the loop in the block diagram treated as a frequency 
dependent function. Referring to the block diagram of Figure 3.0, an expression for the control 
signal, denoted as u(s) and the output can be obtained algebraically as: 
 

)()(; sPIDsCn(s))(e(s)C(s)then: u(s)
output(s)H(s)in(s)cmd as:e(s)ervo errordefining s
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The output is then given as: 
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Solving for the output: 
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The first term in brackets describes the response from the command input to the output and is 
termed the closed loop transfer function (CLTF), with a magnitude called the closed loop gain 
(CLG) or: 









⋅⋅+

⋅
=








⋅⋅+

⋅
=

)()()(1
)()()(;

)()()(1
)()()(

sHsCsP
sCsPsCLG

sHsCsP
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The control compensator gain, |C(s)|, is normally very high and the primary gain term such that 
magnitude of the product of the three terms |P(s)*C(s)*H(s)|>> 1 over the effective operating 
bandwidth of the loop. This product is the open loop transfer function (OLTF) and its magnitude 
called the open loop gain (OLG):  

)()()()(;)()()()( sHsCsPsOLGsHsCsPsOLTF ⋅⋅=⋅⋅=  
 
The feedback term is often a unity gain (or scaled to provide unity gain in the feedback path) as it 
is simply sensing the plant output. This being the case, the closed loop gain, CLG is unity over the 
operating bandwidth of the loop and rolls off towards zero at high frequency. If the feedback gain 
is not unity, it will change the closed loop gain from one to the inverse of the feedback gain 
magnitude (i.e. 1/H). The second expression accounts for the impact of disturbances on the 
response. The transfer function in brackets multiplying the disturbance is often termed the 
compliance—as in how compliant the loop is to a disturbance.  
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This term attenuates the disturbance, primarily due to the high gain control term (C(s) = PID(s)) 
in the open loop gain. Therefore, the higher the controller gain, the more disturbance rejection and 
the less impact the disturbances will have on the output. However, this gain will be limited by the 
stability of the loop. Finally, as modeled, the last term is sensor noise which, as shown effectively, 
adds directly to the output since it is multiplied by the closed loop gain.  As it is basically input to 
the same summing junction as the command input, this would be expected. The servo error 
between the command input and the output is given by: 
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The error is effectively the accuracy with which the output follows the command input. The first 
term in brackets that is multiplying the command input is often called the loop sensitivity function. 
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For unity feedback (H(s)~1) this term is effectively one over the open loop gain—similar to the 
compliance function discussed previously, or: 

1)(
)()(1

1)( =
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

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
⋅+

= sHfor
sCsP
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The transfer function for the plant can vary significantly based upon the application. As will be 
discussed, the PID works best with simpler first and second order plants. For process control 
applications, delays or dead time must often be accounted for and a simple three parameter plant 
model can sometimes be used to describe its response as: 

timedelayordeadLtconstimeresponseTscalingprocessK

e
Ts

KsP sL

−−−

⋅
⋅+

= −

;tan;

)
1

()(  

 
Compensation for the delay is not always possible with a simple controller. If the delay is small 
relative to the sampling period, a simple first order Taylor Series (e-sL ≈ [1-sL]) or Pade’ 
approximation (e-sL ≈ [1-sL]/[1+sL]) may be sufficient. However, if the delay is significant relative 
to the sampling period, the PID would need to be combined with a more advanced control 
algorithm such as the Smith Predictor [1, 2] discussed in part 2 of this course.  
 
The error will be a function of the attenuation provided by this term as well as the magnitude of 
the command, disturbance, and noise. One final error relationship of importance is the steady state 
error which is defined as: 

[ ] 

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It is a measure of the error response or effectively the accuracy of a stable system as time goes to 
infinity. It is normally evaluated against three standard input signals: a step, ramp or rate, and 
parabolic input or acceleration. These signals have the Laplace transforms: 

32 ;;
s

K
parobolic

s
K

ramp
s

K
step parobolicrampstep →→→  

The steady state error is often used as part of the control loop performance specification. The 
required response to these input signals will determine what is termed the loop ‘Type’; which 
refers to the open loop poles at s=0 or the number of integrators (i.e. 1/s terms) in the OLTF(s). If 
we describe a general input to the system as Kx/sn –which  can be any of the above inputs depending 
on the value of n—then the steady state error can be written as: 
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From this expression, Table 5.0 is generated describing the steady state error as a function of 
loop type and input. 
 

Table 5.0 Steady State Error versus Loop Type and Input 
Steady State Error 
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Input 

Type 0 
System 

(no open loop 
poles at s=0) 

Type 1 System 
(one open loop pole 

at s=0) 

Type 2 System 
(two open loop poles 

at s=0) 

More than two  
open loop poles 

at s=0 

Step 
(n=1) 

P

step

K
K
+1

 
0 0 0 

Ramp 
(n=2) ∞ 

V

ramp

K
K

 0 0 

Parabolic 
(n=3) ∞ ∞ 

A

parobolic

K
K

 0 

 )0()0( CPKP ⋅=  [ ])()(lim 0 sCsPsK sV ⋅⋅= →  [ ])()(lim 2
0 sCsPsK sA ⋅⋅= →

  
 
From the table, it is observed that since the PI or PID controllers include an integrator or pole at 
s=0, using it will result in at least a Type 1 system. This is often desirable since the error due to a 
step input to a Type 1 loop will nulled whereas with Type 0 loop results in an error offset. The 
offset is the difference between the desired input and actual output—which is a function of the 
loop gain. The Type 0 loop cannot track a ramp or parabolic input as the error will continue to 
grow infinitely with time for both input types. A Type 1 loop will null the error to a step input at 
a speed based on the loop bandwidth. The Type 1 loop will track a ramp with an offset between 
the input and output—which  is a function of the loop gain. It cannot track a parabolic input as the 
error will continue to grow with time. The Type 2 loop tracks both a step and ramp with zero error 
and a parabolic input with an offset between the input and output which is a function of the loop 
gain. Loop Types greater than two can track all three inputs with zero error, however a loop with 
this  
 
5.0 The PID Control Algorithm: Having described the general feedback control system 
architecture and relationships that govern the output response, the general theory and design of the 
PID controller which relates to the general architecture as C(s)=PID(s) and shown in Figure 5.0 is 
developed.  
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Figure 5.0 Feedback Control Loop with PID Controller 

 
The PID controller structure, parameterized in terms of gain and referenced frequently in the 
literature, is: 

)()()()(
0

teKdeKteKtu D

t

IP ⋅+⋅+⋅= ∫ ττ  

The control signal variable ‘u(t)’ was defined section 4.0 with the controller being the sum of 
three terms:  

• A term proportional to the error with gain KP 
• A term proportional to the integral of the error with gain KI 
• A term proportional to the derivative of the error with gain KD 

The time domain representation, parameterized in terms of gain, can be converted to the frequency 
domain using the Laplace Transform relationships defined in section 3, as:  

)()()( sesK
s

KKsu D
I

P ⋅⋅++=
 

There are several versions of the controller that do not include all three terms; proportional plus 
integral (PI), proportional plus derivative (PD) or have a slightly different structure such as 
proportional plus integral and proportional plus derivative (PIPD). The controller’s versatility can 
be observed from the impact it has on key closed loop system time response characteristics that 
include: 
 

• Rise Time: time required for the plant output to reach 90% of the desired level for the 
first time 

• Overshoot: amount the peak level exceeds the steady state value; normalized to this value 
• Settling Time: time required for system to reach the steady state 
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• Steady-state Error: difference between the steady state output and the desired output 
 
The general effect that increasing each controller parameter has on the response is summarized in 
Table 6.0. 
 

Table 6.0 Effect of Increasing Controller Parameter on System Response 
Parameter Rise Time Overshoot Settling Time Steady State 

Error 
KP decreases increases indeterminate decreases 
KI decreases increases increases eliminates for step 
KD indeterminate decreases decreases indeterminate 

 
Therefore, an increase in KP will decrease rise time and steady state error but increase overshoot 
and tendency towards oscillation. The integral term will make the system at least a Type 1 loop 
with the steady state error as described in Table 5.0. In general, increasing KI reduces stability 
margins, increasing overshoot and settling time, but decreases rise time. Finally, an increase in KD 
decreases both overshoot and settling time. However, it should also be noted that increasing the 
term too much can lead to instability as well as amplification of noise. This last characteristic of 
the derivative term often dominates its performance so that in many applications it is not used. 
One final note regarding the use of the PID: given it only has three control parameters, it does have 
limitations. It can be highly effective controlling simple stable plants but, generally, not those that 
have higher order dynamics, high frequency modes subject to oscillation, or requirements with 
high precision. The PID can usually be used if the plant’s response to a step input is similar to that 
of a first order system. 
 
Another standard PID structure, which is actually the International Society of Automation (ISA) 
standard form, is parameterized by times associated with the integral and derivative. This form is 
often used in process control applications. The gains are parameterized relative to the time periods 
associated with integration and differentiation as: KI = KP /TI where TI is the integral time TI, and 
KD = KP * TD where TD is the derivative time. With this parameterization, the preceding equation 
can be expressed as: 

))()(1)(()(
0

teTde
T

teKtu D

t

I
P ⋅+⋅⋅+⋅= ∫ ττ  

The frequency domain equivalent is then given by: 

)()11()( sesT
Ts

Ksu D
I

P ⋅⋅+
⋅

+⋅=  

The proportional, integral, and derivative control terms compensate for the past, present and future 
error response. The integral term will always try to null the steady state error and becomes the 
nominal control term as the error converges. The integral time can be considered as a filter time 
constant in a positive feedback loop as shown for a PI controller in Figure 6.0 [1].  
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Figure 6.0 PI Controller Configured as Positive Feedback through a Filter 

 
The control signal is given by: 

sT
susIsIseKsu
I

P ⋅+
=+⋅=

1
)()(with)()()(  

Solving these equations for I(s) results in the PI control signal: 

)()()().()( se
sT

KseKsuse
sT

KsI
I

P
P

I

P ⋅
⋅

+⋅=∴⋅
⋅

=  

The derivative term can provide a phase lead of up to ~50° and be considered as a predictive 
element can be seen from its definition: 

)()()()()(lim)( 0 teTteTte
T

teTtete DD
D

D
TD

 ⋅+≈+∴
−+

= →
 

Issues with this term are that it amplifies noise, especially at high frequency and if it is too large—
which can lead to oscillation and instability in a PID controller. Noise can be attenuated by adding 
a pole to roll-off the frequency response or effectively filter the signal at high frequency.  
Effectively this is the implementation of the derivative term as a high pass filter. The structure 
with the roll off frequency is: 

rolloff

D
I

P

fawhere

se
as
saT

Ts
Ksu

⋅⋅=

⋅
+
⋅

⋅+
⋅

+⋅=

π2

)()11()(  

5.1 Time versus Frequency Domain Representations: The two representations provide different 
perspectives of the controller. In the time domain, the controller consists of integral, proportional, 
and derivative parts corresponding to control terms that compensate for the past, present and future 
error response; each weighted by their respective gains. Intuitively this seems a reasonable 
approach, providing three states of the error dynamics to use for loop response compensation.  In 
the frequency domain, terms cannot be treated separately and the benefits are not quite as obvious 
as in time domain. Without the derivative term, the PI controller frequency response can easily be 
interpreted with the representation: 

)11()()(
I

P Ts
KsPIsC

⋅
+⋅==  

In the frequency domain, this controller consists of a pole at 0 and a zero at 1/TI. In the time 
domain, this zero will normally cause an overshoot in the system step response dependent upon 
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the magnitude of the zero and other elements of the control loop. The PI frequency response is 
shown for KP = 62.8, and KI = 592. This corresponds to TI=0.106 and hence has a zero at 1/TI = 
9.4. The frequency response is shown in Figure 7.0. 

 
Figure 7.0 PI Frequency Response 

The effect of the integrator pole at 0 is to provide a high gain with a -20 dB per decade slope to 
the magnitude of the controller at low frequency asymptotically converging to the value of the 
proportional gain. The inflection point is at the zero frequency or 9.4/(2*π) ~1.5 Hz. The zero term 
provides +20 dB per decade of gain causing the magnitude to level out as seen in the response plot. 
The one issue with the PI controller is it provides no phase lead, with a 90˚ phase lag due to the 
integrator at low frequency; asymptotically approaching zero phase at higher frequency. It will not 
work with systems which have a phase lag of 180° or more and in general, it will have the effect 
of reducing the loop phase margin.  
 
The PID controller frequency response is slightly more difficult to interpret. The PID controller 
represents an improper transfer function, due to the derivative term, with two zeroes in the 
numerator and one pole at zero in the denominator.  The pole at zero will provide a -20 dB per 
decade slope to the magnitude of the controller at low frequency and each zero a +20 dB per decade 
slope at higher frequencies depending on the values of each zero. This can be seen in either 
standard form of the PID transfer function: 

s
KsKsK

s
T
KsKsTK

sT
Ts

KsPIDsC IPDI

P
PDP

D
I

P
+⋅+⋅

=
+⋅+⋅⋅

=⋅+
⋅

+⋅==
2

2
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The magnitude |*|, phase Φ, and zeroes of both forms of the PID transfer function are given in 
Table 7.0. 

Table 7.0 PID Standard Form Magnitude, Phase, Zeroes 
 Standard PID Gain Standard PID Time 
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It can be observed that if TD/TI > ¼ (or KD*KI / KP

2 > 1/4) the zeroes are complex roots. The zeroes 
of the plant and compensator will also be the zeroes of the closed loop system. For a pair of zeroes, 
the PID(s) frequency response magnitude will dip or notch at ~ωmin = √(KI/KD) = √(1/(TI*TD)). As 
an example, the PID frequency response is shown for KP =62.8, KI = 592, and KD =10. This 
corresponds to TI =0.106 and TD =0.16 so TD / TI = 1.5 and the zeroes are complex -3.1±7j. The 
controller frequency response is shown in Figure 8.0 with a notch at ~1.22 Hz. 

 
Figure 8.0 PID Frequency Response 
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The overall response with the derivative is dominated by this term at high frequencies, the gain 
increasing at + 20 dB per decade. This characteristic is one issue with a simple implementation of 
the controller and the reason it is normally implemented as a high pass filter with a pole to roll off 
the response at high frequency as opposed to the +20 dB per decade slope. Of course, the overall 
benefit of the PID will depend on the characteristic of the process itself. If it is already low 
frequency or heavily filtered, the roll-off may not be required. In general, however, it is good 
practice since the derivative will always differentiate noise amplifying it especially at high 
frequency.  
 
5.2 Closed Loop System Simulation with a PID Controller: To provide a visualization of the effect 
each PID term has on the closed loop response, an example based upon the block diagram in Figure 
2.0 is provided with the terms defined as:  
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The plant has a pole at zero and 1 Hz. The desired closed loop bandwidth is ~10 Hz so expectations 
would be the derivative term would be necessary. However, to evaluate the contribution of each 
term, first proportional only is used with KP = 2*π*10 = 62.8. The output and error response of the 
closed loop to a step input is shown in Figure 9.0. 
 

 
Figure 9.0 Output and Error Time Response to a Step for Proportional Only Control 
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It is seen that the response is oscillatory with an effective bandwidth estimated from the period of 
~2.6 Hz. The error to the step does go to zero, but is due to the plant having a pole at zero which 
makes it a Type 1 loop (see Table 4.0) not the controller. If the plant did not have the pole at zero, 
there would be a steady state error inversely proportional to the gain of the controller. The 
frequency response plot of the closed and open loop gain (see section 4.0, closed loop gain = 
CLG(s) and open loop gain = OLG(s)) and open loop phase (see section 3.0) is shown in Figure 
10.0. The open loop gain crossover frequency is 3 Hz (when open loop gain = 1), close to that 
observed but the phase angle is ~-160 ˚. This translates to a low phase margin (PM) of 18˚ (PM = 
180˚+ (-160˚) = 20˚) which results in the oscillation observed. 

 
Figure 10.0 Frequency Response for Proportional only 

 
With an integral term (Ki=592) added to the controller, the phase margin will be reduced further 
since the integrator induces a 90˚ phase lag. The response is shown in Figure 11.0 with the same 
KP and is unstable. The frequency response of the PI controller can be seen in Figure 12.a. The 
integral term dominates with high gain at low frequency rolling off at 20 dB per decade until it 
levels near the zero frequency and is dominated by the proportional gain. The phase response is 
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also shown, adding 90˚ of lag at low frequency that causes the instability. The system frequency 
response is shown in Figure 12.b. The open loop gain crossover frequency is still at 3 Hz but the 
phase is never greater than -180˚resulting in system instability 
 

 
Figure 11.0 Output and Error Time Response to a Step for PI Control 

 

  
    Figure 12.a PI Controller Frequency Response    Figure 12.b System Frequency Response 

 
The contribution of the integral term increases with decreasing integral time, however, this also 
reduces stability margins. Decreasing Ki is effectively an increase in integral time. Reducing both 
PI control gains, Kp and Ki , will stabilize the loop, but this also results in a lower bandwidth or 
slower response time. With the Kp and Ki gains reduced, the resulting time response shown in 
Figure 13.0 and the system frequency response in Figure 14.b. The gain crossover frequency is 
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less than 2 Hz but the open loop phase is ~ -160 so there is a positive PM indicating potential 
stability, however, the response is still too slow.  
 

 
Figure 13.0 Output and Error Time Response to a Step for PI Control Reduced Gains 

 

 
Figure 14.a PI Frequency Response Reduced Gain    Figure 14.b System Frequency Response 
 
Finally, the derivative term is added to the controller, forming a PID structure. The derivative term 
is implemented as a high pass filter with the roll-off frequency at 250 Hz. For this case, the phase 
lead of the derivative term helps considerably by damping the oscillation. The time response is 
shown in Figure 15.0. Oscillation has been reduced significantly with only ~15% maximum 
overshoot.  
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Figure 15.0 Output and Error Time Response to a Step for PID Control 

 
The frequency response of the PID is shown in Figure 16.a illustrating the effect of the integral 
gain at low frequency, the derivative term creating the notch in the mid-frequency range (1 Hz) 
and the roll off at high frequency. It is also observed that the phase angle will add a positive 
phase to the loop enhancing stability (note phase fold-over is due to plot range). The system 
frequency response plot is shown in Figure 16.b. The gain crossover frequency is now at 10 Hz, 
as desired, with a phase margin > 80˚ --which  is higher than needed, but illustrates the positive 
impact of the derivative term.  
      Figure 16.a PID Frequency Response              Figure 16.b System Frequency Response 

 
5.3 Different Forms of the PID Control Algorithm: There are several manifestations of the PID, 
and different forms of the PID may apply better to difference applications. For example, for 
process control applications tend to be slower and temporal representations are more important for 
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tuning performance. A higher bandwidth target tracking application design may rely more on 
placement and tuning for a desired frequency response so that frequency parameters are more 
relevant. There are two standard PID algorithm representations as discussed previously. One is 
parameterized in terms of a gain, integral time, and derivative time as:  
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Ts

Ksu D
I

P ⋅⋅+
⋅

+⋅=  

or replacing the derivative with a high pass filter:  
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The other standard form is parameterized in terms of absolute gain as:  
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Again, the derivative can be replaced with a high pass filter as: 
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With the two standard-forms, the proportional gains are equivalent and the other gains related as: 
KI = KP /TI where TI is the integral time TI, and KD = KP * TD where TD is the derivative time. In 
the latter representation, the parameter values are related to absolute gains rather than times 
associated with integration and the derivative. As the parameters linearly weight the operator of 
each term, it is useful in analytical calculations; it also has the advantage that it is possible to obtain 
pure proportional, integral, or derivative action by finite values of the parameters.  
 
A slightly different version of the controller is the forward path product of a proportional integral 
cascaded with a proportional derivative controller (PI*PD) as given by:  
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This version is much easier to work with in the frequency domain as terms are factored so that 
both zeroes, the pole at zero, and DC gain are easily delineated. One interpretation of this form is 
a PI controller operating on the predicted value the error signal. The parameterization of this 
structure and the standard structure are not equivalent. The factored form can be equated to the 
standard form by multiplying out the factors and equating like coefficients:  
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Equating the standard form to a factored form is possible only if the zeroes of the standard form 
are real—which requires TI>4*TD. The factored form can also use the high pass filter for noise 
attenuation as previously discussed, or: 

)()1()11()( se
as
saT

Ts
Ksu D

I
P ⋅

+
⋅

⋅′+⋅
′⋅

+⋅′=  

 
In this manifestation, the PD term can also be interpreted as a lead compensator. Expanding this 
term results in: 
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The lead pole is at ‘a’ and the zero at ‘a/(1+aT’D)’. A final implementation discussed uses a 
proportional plus integral in the forward path operating on the error with a proportional plus 
derivative (PIPD) controller in the output feedback path as illustrated in the block diagram shown 
in Figure 17.0.  

 
Figure 17.0 PIPD Controller Architecture 

 
The PIPD Controller transfer functions are: 
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 The controller is then given by:  
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Substituting the transfer function equations results in: 
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The parameters of this controller are related to the standard form with absolute gains as: 
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The PD controller proportional gain must be one for a zero steady state error. This form has 
advantages that the derivative operates on the output rather than the error which is often a smoother 
function so generates a less noise in response. 
 
 6.0 Control Loop Performance Specifications: The specification defines the desired feedback loop 
performance. From a practical perspective, the control loop designer must understand the user 
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requirements to develop a satisfactory specification. Key characteristics often specified by a user 
are accuracy and response time for a defined command signal or range of signals and the 
disturbance and noise environment. From this information, the designer must develop the control 
requirements and specification. As discussed previously, accuracy and disturbance rejection are 
improved by a high gain controller, as is response time. As gain is effectively proportional to 
bandwidth, this implies a higher bandwidth improves performance. However, as the bandwidth 
increases, the loop stability margins begin to decrease, more overshoot results, control elements 
can saturate, and the noise between loop elements can be amplified. So, the design is a tradeoff 
between the user requirements and control loop specifications that meet these requirements with 
sufficient stability margins.  
 
Control specific specifications can be defined in either the time or frequency domain and need to 
be derived from system performance specifications. In the time domain they may relate directly, 
as discussed in section 5.0, with response specified in terms of: rise time, overshoot, settling time, 
and steady state error—all of which are a function of bandwidth and the control compensator 
structure. In the frequency domain, they are often derived from disturbance rejection and 
maximum allowable servo error requirements; as they relate to system performance. To achieve 
this performance the designer can specify the resonant peak, peak frequency, gain crossover 
frequency, bandwidth (which in some cases are directly related), and the minimum allowable phase 
and gain margins. The resonant peak is a maximum of the gain at the peak frequency.  
 
Another important specification is the control loop type which as discussed previously refers to 
the number of integrators within the loop; either due to the controller or the plant dynamics. The 
loop type or number of integrators will determine the accuracy (maximum error) with which the 
output follows an input command or rejects a disturbance in the long term.  The integrator also 
provides very high gain at low frequency which is good for disturbance rejection and improved 
accuracy; however, each pole at s=0 also provides a -90° phase shift which can impact stability.  
 
The robustness of the controller design must also be considered. If the plant parameters change for 
whatever reason, what will happen to the loop stability margins? The controller design must 
account for these variations. This can be accomplished by designing for the worst-case plant 
variation and ensuring the system meets the stability margins over the full range of plant variation; 
measuring the plant response (i.e. plant identification) and changing control parameters to account 
for the plant changes (either manually or on a scheduled basis), or a using an adaptive controller 
that automatically adjusts the control parameters as a function of the plant variations.  
 
7.0 PID Controller Design:  Most general methods for control system design can be applied to PID 
control; within the constraints of the controller structure. PID controller design can be categorized 
as derived from manual tuning and measurement processes and/or those more analytically 
determined. A number of special methods made specifically for PID control have also been 
developed; often called tuning methods. Irrespective of the method, however, the design must 
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always account for characteristics of the load disturbances, sensor noise, process uncertainty 
reference signal so that a robust design is achieved.  
 
7.1 Manual Tuning Based on Process Measurements [1, 2]: The tuning algorithms developed by 
Ziegler and Nichols are among the most well-known methods referenced in literature. They are 
based on characterization of process dynamics by a few controller parameters and simple equations 
relating them to PID parameters. There are two baseline methods termed the step response and 
frequency response methods along with many subsequent modifications derived from these 
methods to improve performance 
 
7.1.1 The Ziegler and Nichols Step Response Method [1, 2]: The step response method 
characterizes the measured open loop plant step response with two parameters, ‘a’ and ‘L’. This 
method is applicable to plants with a bounded step response; results being best when the response 
is close to being first order. The definitions of the parameters are shown in Figure 18 with the full 
step response to the left and the expanded region relevant to the design parameters ‘a’ and ‘L’ to 
the right.    
 

    
Figure 18 Characterization of a Step Response in the Ziegler Nichols Step Response Method. 
 
The tangent to the step response slope at its maximum value is determined and a line is drawn 
intersecting the time and state response axes. The intersections with the coordinate axes provide 
the two parameters as shown in the figure. The time interval intersected on the time axis is termed 
‘L’ and the state delta intersected on the state response axis ‘a’. The PID controller parameters are 
a function of these parameters as shown in Table 8.0 with Tp being an estimate of the closed loop 
period or response time. 
 

Table 8.0 PID Controller Parameters for Ziegler Nichols Step Response Method 
Controller KP TI TD Tp 

P 1/a   4L 
PI 0.9/a 3L  5.7L 

PID 1.2/a 2L L/2 3.4L 
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An improved step response method can be used for stable processes with delay as well as 
integrating processes. This method characterizes the unit step response by three parameters K, L 
and T. The definitions of the parameters are similar to those for the baseline step response method 
and are shown in Figure 19.0. This parameterization matches plant models with the transfer 
functions estimated as:  
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Figure 19.0 Step Response Characterization 3 Parameter Model 

Again, these parameters and are obtained from measured step response data. The transfer function 
P1(s) is a first order system with time delay. Parameter L is determined from the intercept of the 
tangent with largest slope with the time axis as was described for the baseline step response 
method. Parameter L is also determined as the difference between the delay time and the time the 
step response reaches 63% of its steady state value. Parameter K is the static gain of the system. 
Parameter L is the estimated time delay and parameter T the estimated time constant. The 
significance of the delay can be evaluated by the relative delay ratio: 

TL
L
+

=η  

It provides an estimate of the temporal response driver; the response time lag, T, or the processing 
delay, L. PI control often suffices for processes that are delay dominated, i.e. when η is close to 
one while derivative action is typically beneficial for processes with small relative delay η. To 
obtain improved tuning rules, described in [4], the author used a design method to maximize the 
integral gain constrained for robustness so that the maximum sensitivity is <1.4. Using this 
procedure, one tuning rule for an improved PI controller was: 
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7.1.2 The Ziegler Nichols Frequency Response Method [1, 2]: A second method developed by 
Ziegler and Nichols is a simple characterization of the frequency response of the plant dynamics. 
The design is based on knowledge of the control loop frequency when plant’s phase is -180˚. On 
the Nyquist plot of the process transfer function P(s); this is the point where the Nyquist curve 
intersects the negative real axis. On a Bode Plot, it is equivalent to a phase crossover frequency 
for the open loop plant response; defining a boundary between a stable and unstable response. The 
Ziegler Nichols Frequency Response Method is characterized by two parameters, the frequency 
ω180 and the gain at that frequency K180 =|P(iω180)|. The parameters Ku =1/K180 and Tu = 2π / ω180, 
termed the ultimate gain and the ultimate period are used to derive the PID controller gains. These 
parameters are determined by connect a controller to the process; setting the parameters so that 
control action is proportional, i.e., TI =0 and TD= 0 and then increasing the gain slowly until the 
process oscillates. The gain at which this occurs is Ku and the oscillation period is Tu. The 
parameters of the controller are then given by Table 9.0. The frequency response method is an 
empirical tuning procedure where the controller parameters are obtained directly from process 
measurements combined with some simple rules. For a proportional controller, the rule is to simply 
increase the gain until the process oscillates and then reduce it by 50%.  
 

Table 9.0 PID Controller Parameters for Ziegler Nichols frequency response method 
Controller K TI TD Tp 

P 0.5Ku   Tu 
PI 0.4Ku 0.8Tu  1.4Tu 

PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu 
 
An assessment [1] of the Ziegler Nichols Methods is that the tuning rules were developed to 
provide closed loop systems with good attenuation of load disturbances. The methods were based 
on extensive simulations. The design criterion was quarter amplitude decay ratio, which means 
that the amplitude of an oscillation should be reduced by a factor of four over a whole period. This 
corresponds to closed loop poles with a relative damping of about ξ = 0.2, which is too small. 
Controllers designed by the Ziegler Nichols rules inherently give closed loop systems with poor 
robustness. However, they are simple to use and do provide ball park estimates for the controller 
parameters with the final tuning done by trial and error.  
 
7.2 Analytical Design Approaches: Analytical approaches (model matching criterion), again 
discussed in part 1, generally refer to i) trying to match the system response to that of a desired 
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reference model or ii) signal or trying to place poles of the system response at those desired for a 
specified response. There are many control loop design techniques; most involve some form of 
loop shaping and/or algebraic pole-zero placement and cancellation. Loop shaping can be 
accomplished using Bode or Nyquist plot analysis. Visually, the Bode plot is easy to interpret and 
adjust the response especially if implemented in a mathematical computer aided design program 
(i.e. MatLab or MathCad). The Bode plot can be used with measured plant gain and phase response 
data, the plant-pole zero structure does not have to be known exactly (although the Bode design 
still subject minimum phase criterion). Algebraic methods appear straightforward but require 
knowledge of the plant pole-zero structure and care must be taken to insure stable design. For 
example, pole and zero cancellation must be done with some sensitivity analysis because they are 
never known exactly and in some cases, can change or drift. The is especially true if the poles and 
zeroes are not stable; direct cancellation can result in a pole/zero pair that are unstable (both roots 
in right half s-plane) as opposed cancellation of the unstable root. The loop Type can be adjusted 
using the PI or PID controller. When using any control term with a pure integrator, the output 
should be limited or other measures taken to insure windup of the integrator does not occur. A 
couple of simple design examples are provided. 
 
7.2.1 Frequency Domain Design: Assume for a unity feedback loop the desired gain crossover 
frequency fGC = 40 Hz and the phase margin > 55°. This provides two criteria to satisfy with the 
compensator: 
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From the definition of the open loop unity gain transfer function in section 3.0, this can be 
expressed as: 
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The plant is given by: 

2)(
s
KsP L=  

The plant parameter KL is the scaling factor. For a double integrator, the phase lag is -180° so it 
can be assumed to obtain the desired response a proportional plus derivative (PD) controller 
implemented with a roll-off filter or basically a lead compensator of the form:  
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The pole frequency at 160 Hz is chosen as the roll-off frequency for the loop, effectively limits 
frequency response and reduces higher frequency noise. Representing the poles and zeroes in terms 
of a frequency provides for better visualization of the design process. It is also useful to cancel 
plant parameters with a scaling factor so effectively the loop response is shaped only by the 
normalized plant response and the compensator. The compensator is then expressed as: 
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This will be a Type 2 control loop. The values for the compensator gain and zero are obtained by 
first obtaining the value of the zero from the phase margin condition and solving for the gain from 
the OLG condition. From this expression, the phase components are given by: 
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Substituting into the expression for phase margin and solving for α: 

Hzffforsolving

aor

aa

ZCZC

GC
GCGC

4.15
2
97297

)69tan(
402:

14)402tan(55

402;180)
1602

tan()tan(125

=
⋅

=⇒⋅⋅==
°

⋅⋅
=

°−
⋅⋅

=°

⋅⋅=−
⋅⋅

−=°−

π
ππαα

α
π

πω
π
ω

α
ω

 

 
The phase margin criterion is satisfied with the compensator zero at 15.4 Hz. The magnitude 
criterion is now used to determine the value of KP0 that satisfies the open loop gain condition at 
the gain crossover frequency.  
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The compensator gain that satisfies the open loop gain crossover frequency condition is then: 
( ) ( )4.1525.382 ⋅⋅⋅⋅⋅=⋅= ππαKKP  

 
7.2.2 Compensator Derived from a Model CLTF(s): Another method for designing the controller 
is to specify a closed loop system model based upon the desired performance. For example, 
response time or bandwidth, overshoot, stability margins could be specified.  With the closed loop 
transfer function model defined and the plant transfer function known, the compensator can be 
determined. Assuming unity gain feedback and using the definition for the closed loop response: 
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The compensator cancels the plant and substitutes an open loop transfer function that gives the 
desired closed loop transfer function. There are some important constraints: 
 

• If the plant has a pole in the right half s-plane (pole with a positive real part) then the model 
M(s) must be chosen such the DM(s)-NM(s) has the same root. 

• If the plant has a zero in the right half s-plane then the desired M(s) must have the same 
right half s-plane zero 

• To be realizable, the excess poles of the desired m(s) must be equal or greater than the 
excess poles of the plant. If the numerator polynomial of a transfer function is of order nz 
and the denominator polynomial of order np then the excess poles are np-nz.  

 
Simple examples are provided with a desired CLTF(s) and plant of various forms. Assume the 
desired closed loop response is a second order model with bandwidth 𝑓𝑓0 and damping constant ς0 
given by: 
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Table 10.0 provides the controller that provides the desired closed loop response for a given plant 
transfer function. The plant parameters are defined as:  
 frequencynaturalundampedplantω;constantdampingplantζ;fπ2ω mmmm −−⋅⋅=  

Table 10.0 PID Controller for Desired Closed Loop Response and Plant 
Plant C(s) KP KI KD 
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7.3 Design Issues: To obtain good performance from a PID controller it is necessary to consider 
issues that impact or limit performance. A number of practical issues have been discussed. As 
mentioned, simple controllers like the PI and PID controller are not suitable for all processes. The 
PID controller is suitable for processes with almost monotone step responses, similar to that for a 
first order plant, provided that the requirements are not too stringent. A couple of issues mentioned 
previously were related to the integral and derivative terms, these and others are discussed in more 
detail in this section. The main issues, many of which are common to most controllers, are:  
 
Derivative Term: This issue has been described and can most easily be understood by simple 
differentiation of a sinusoid which results in the output being shifted by 90° and amplified by the 
radian frequency (2*π*f); the higher the frequency the greater the amplification. This is also 
obvious from the frequency response of the differentiator magnitude which goes to infinity as 
frequency increases. The implementation of the derivative as a high pass filter with a roll-off 
frequency that suppresses the high frequency noise reduces this problem. Effective noise can also 
be generated within the error signal due to disturbances or simply the functionality of the drive 
component. In section 5.3 ‘Different Forms of the PID Control Algorithm’, a structure using output 
feedback to implement the derivative terms was discussed that could mitigate any potential issue 
as the output is often a smoother function than the error so generates a less noise in the response.    
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Integrator Windup: Use of an integrator in a physical system comes with the possibility integrator 
saturation. This effectively eliminates the integrator as a control term; converting a linear system 
response to a non-linear one. Windup results when the integral action saturates. All actuators have 
limits and for a control system with a wide range of operating conditions, the controller can reach 
these limits. The feedback loop is then broken and the system runs open loop because the actuator 
remains at its limit independent of the process output. If a controller with integrating action is used, 
the error will continue to be integrated. This means that the integral term may become very large 
or, in essence, “winds up”. It is then required that the error has opposite sign for a long period 
before things return to normal. The consequence is that any controller with integral action may 
give large transients when the actuator saturates. The simplest methods for addressing windup are 
limiting the integral term or input to the integral. However, this can also limit performance and 
generally does not really solve the problem. A better method is to measure the integrator output 
and as it approaches the actuator saturation level and provide feedback that reduces the input; 
sometimes termed the tracking and back calculation approach. A block diagram of the method is 
shown in Figure 20.0 [1]. 
 

 
 

Figure 20.0 Tracking and Back Calculation Wind-up Compensation 
 
Set Point Weighting [1]: With the standard PID control law, a step change in the reference signal 
results in an impulse to the control signal due to the derivative term. This problem can be avoided 
by filtering the reference value before being input to the controller or by using proportional only 
on part of the reference signal. This is called set point weighting. A PID controller given by: 
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The integral term remains unchanged; being based on error feedback to ensure the desired steady 
state. The constants β and σ are additional parameters used to weight the input command associated 
with the proportional and derivative terms. This controller can be expressed as: 
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Effectively the form has two degrees of freedom because the signal path from output to u is 
different from the cmd in to u. The transfer function from cmd in to u is:  
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The transfer function from output to u is:  
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With this controller, the system will respond to load disturbances and measurement noise as with 
the standard controller. The response to reference values, however, can be modified by the 
parameters β and σ. Overshoot for set point changes will be minimal for β =0 since the reference 
is only part of the integral term. The parameter σ is normally zero to avoid large transients in the 
control signal due to sudden changes in the set point. The controller with set point weighting is 
very similar in form to the PIPD controller described in section 5.3. The controller with β = 0 and 
σ = 0 is often called an integral proportional plus derivative (IPD) controller. For β = 1 and σ = 0 
it is the PIPD controller from section 5.3. With this structure, tuning is easier, since KP, TI and TD 
can first be determined to deal with load disturbances, measurement noise and process uncertainty. 
The set point response can then be adjusted by choosing the parameters β and σ.  
 
8.0 Home Heating System: This example is a simplified version of feedback control for heating a 
house. The use of a PID controller for this application will be examined. The physical 
configuration of the control loop is illustrated in Figure 21.0. The house is idealized as a box filled 
with air at a uniform temperature TC. The walls of the house are considered as pure resistance to 
heat transfer with no energy storage capacity. The overall coefficient of heat transfer is U and the 
heat transfer area is A. The outdoor environment temperature is Te, varies with time thereby acting 
as a disturbance to the control system. The temperature TC is measured by a temperature sensor in 
a thermostat or temperature controller mounted inside the house. The desired temperature can also 
be set by this device, or in today’s environment may even interface to a smart phone with an APP 
that lets it be set remotely. It is assumed that the temperature is converted to a voltage (or current) 
with a scaling constant KTV (with units Volt/°F) and processed by electronics or more likely in 
today’s environment a micro-controller.  
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Figure 21.0 Concept Feedback Control Configuration for Heating a House 

 
The controller will take the difference between the desired and actual temperature and generates a 
control signal to the furnace. This signal controls an actuator that increases or decreases the gas 
flow and effectively the amount of heat into the room. For this simple example, the actuation and 
heat generation are modeled as a linear process; in reality, it is a complex process. In developing 
a model of the system, it is assumed that initially the house is in equilibrium with constant values 
of TC and Te. The furnace will then be supplying sufficient heat to balance the heat loss to the 
environment. Any disturbance or change in the desired temperature will result in an increase or 
decrease in heat input from this original value. All variables should be considered deviations from 
their initial equilibrium condition.  The simple first order thermal dynamic model for the heat 
balance in the house (the control loop plant) in the time domain is: 
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Converting to the frequency domain and rearranging terms: 
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This represents the model of the plant; in terms of previous notation: 
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The temperature TC is then given by: 
))()(()()( sTAUsQsPsT eMC ⋅⋅+⋅=  

A feedback control system measures the house temperature TC and compares it to a desired 
temperature TS or the set point. The heat input is assumed proportional to this temperature 
difference, a simplification for the example.  The control loop is shown in Figure 22.0. As the plant 
response is defined by a first order response, a reasonable choice for the controller, C(s), is a PID 
type implementation. The example will analyze the response for a P only and PI control. 

 
Figure 22.0 Block diagram of home heating control servo loop 

 
From the block diagram, QM is given by: 

HRBTUsTsTKsCKsQ CSTVVQM /)()(()()( −⋅⋅⋅=  
 

Substituting into the expression for temperature TC the loop dynamics can be expressed as: 
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Solving for TC: 
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The error between the set point temperature and the actual temperature is given by: 
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As discussed previously, the error is a function of the magnitude of the outside and set point 
temperatures and the error attenuation provided by the controller gain. The simplest controller is a 
proportional gain or C(s) = KP with units of volts /volts. Substituting into the previous expression 
and using the plant definition: 
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Stability is not an issue, as the open loop has only one real negative pole. The term λ is basically 
the attenuation factor whose magnitude is based upon the value of KP. The time constant of the 
system will also be reduced by this factor. As this is a Type 0 system, there will be a steady state 
error to a step change. For a step change in Te and TS, the steady state error is given by: 
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The step change in the input will most likely come from a new set point, as the temperature of the 
environment would not be expected to change instantaneously so: 

changestepTE SsSS δλ ⋅=  
The gain KP is chosen to provide an attenuation factor λ that is consistent with the amount of 
allowable offset that can be tolerated between the new set point and actual temperature. For 
example, with the gain was chosen as: 
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The resulting attenuation would be a factor of 100 or -40 dB. The achievable gain will also depend 
upon the actual drive characteristics of the furnace. The gain crossover can be determined by a 
Bode plot or estimated directly from the OLTF as fGC~0.004 Hz.  
 
Given the baseline P-only results, a proportional plus integral controller (PI) design is examined 
next. With a proportional plus integral controller (PI) the system is Type 1 and the steady state 
offset to a step equal to zero. The PI compensator has the form: 
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The open loop transfer function is: 
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Closed loop system denominator is now a quadratic polynomial. Since all coefficients are positive, 
the roots will have negative real parts so that the system will be stable. The stability margins are 
obtained using a Bode plot. The open loop gain and phase are shown in Figure 23.0.  

http://www.suncam.com/


 
Proportional, Integral, and Derivative Controller Design Part 1 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 Peter J. Kennedy Page 39 of 40 

 

phase
margin

 
 

Figure 23.0 Bode plot for Example with PI controller 
The gain crossover frequency is ~0.0167 Hz, the PM~67°. The gain margin is infinite since the PI 
integrator lag is offset by the zero so the net lag is only that of the plant which being first order is 
90°. Care must be taken in an actual design to ensure the higher bandwidth does not put too much 
demand on the furnace drive. The expression for the error for this compensator is: 
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For a step change, the steady state error will be zero since: 
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For a ramp or steadily increasing temperature change, the steady state error is: 
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The set point will normally not change as a ramp, however the temperature of the environment 
can so that most likely the steady state error for this case would be: 

rampTE erSS
δλ ⋅=  

Using the definition of KP for this case, λr=0.05 or -25 dB with the PI controller. 
 
9.0 Summary: This completes the course material. The topics covered began with a description of 
the basic feedback control loop block diagram in section 2 and how the PID relates to the control 
loop. The relationships between time and frequency domain representations of the block diagram 
elements were discussed in section 3 followed by the key feedback relationships derived from the 
block diagram algebra in section 4. The PID control algorithm was described in section 5 which 
included the frequency domain characterization of the PID (5.1), the effect of each PID term has 
on response (5.2) and finally different forms of the PID used in actual applications. In section 6 a 
discussion of specifying control loop performance was presented. PID control loop design methods 
were provided in section 7. The basic theory was applied to an example; a home heating system, 
in section 8. Part 2 of this course will discuss the computer implementation of the PID algorithm 
and interfacing with more advanced control methods. 
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