

A SunCam online continuing education course

Introduction to Arduino
by

Benjamin Tyler, PE
President, Bxtel, LLC

353.pdf

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 2 of 58

Contents
Introduction ... 4
Author Introduction .. 5
Suggested Course Materials ... 6
What is Arduino? ... 8
Arduino Uno and Other Arduino Boards .. 10
Shields .. 12
Arduino Code .. 13
Libraries .. 14
Setting Up the Arduino IDE ... 15
Debugging ... 18
Sketch 1: Digital I/O and Delays .. 19
Sketch 2: Button Debouncing .. 24
Sketch 3: Analog I/O ... 30
Sketch 4: Functions, Random Numbers, and Strings .. 35
Sketch 5: Interrupts ... 40
Sketch 6: I2C and External Libraries .. 43
Using an Arduino In Production ... 56
Conclusion .. 58

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 3 of 58

Figures
Figure 1 UNO Board .. 11
Figure 2 Shields from Sparkfun ... 12
Figure 3 Arduino IDE ... 16
Figure 4 IDE Window .. 17
Figure 5 Serial Monitor .. 18
Figure 6 Button Debouncing Circuit... 25
Figure 7 Button Debouncing Schematic .. 26
Figure 8 Analog Circuit .. 31
Figure 9 Analog Schematic ... 32
Figure 10 4-Pin, I2C Serial Bus Components .. 44
Figure 11 3-Pin, I2C Serial Bus Components .. 44
Figure 12 4-Pin, I2C Serial Bus Schematic .. 45
Figure 13 3-Pin, I2C Serial Bus Schematic .. 46
Figure 14 Library Window ... 50

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 4 of 58

Introduction
This course is an introduction to Arduino, an ideal platform for rapid development of
programmable electronics. The course will discuss what Arduino is, how to use it, who
should use it, what kinds of things can be made with it, and the practical limitations of
the platform. We will walk through a few sample projects to demonstrate core concepts
of Arduino coding and interfacing.

Arduino has simplified the software and hardware aspects of electronics development.
Writing code for Arduino has a lower learning curve than traditional embedded systems
development. The low level software and hardware design work have mostly been done
for users. There is a large community built around Arduino, with a lot of open source
software and hardware that can be used "off the shelf." Consequently, Arduino enables
an engineer to take an idea to prototype much quicker.

This course is for engineers with at least a rudimentary grasp of C or C++ programming
and electronics. You should be able to read a schematic diagram and recognize
elements like resistors and capacitors. Arduino is very beginner friend, yet those with
more software development experience will not be held back.

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 5 of 58

Author Introduction
This course has been produced by Benjamin Tyler, PE, who has over 15 years
designing embedded systems, data acquisition and automation systems, and mobile
apps.

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 6 of 58

Suggested Course Materials
While this course can be completed without an Arduino board, you will get much more
out of this course if you follow along with one. I recommend the Arduino Uno, as it is
inexpensive and very capable. Furthermore, I recommend you buy a kit that contains
an Arduino board, sensors, and other components. You can use an Arduino board
other than the Uno, but you might need to make minor changes to the project code. The
Arduino Leonardo board is a great alternative to the Uno, and one advantage it has over
the Uno is that it can function as a USB peripheral.

Make sure to get the following components, or a kit that contains them:
• Arduino Uno R3 or newer version

• male-female and male-male jumper wires

• solderless breadboard

• 100k Ohm potentiometer

• 10k Ohm carbon film resistor

• 220 Ohm resistor

• momentary button

• LED

• 1602 LCD with I2C interface preferred

• DHT11 temperature and humidity sensor

Here are a few places you can buy an Arduino board or kit and parts:
• Amazon list of suitable kits: http://a.co/9Db81gF

• Sparkfun kit: https://www.sparkfun.com/products/14418 (no DHT11 sensor)
• https://store.arduino.cc/usa/arduino-starter-kit (no DHT11 sensor)

• Adafruit kit with board similar to Uno: https://www.adafruit.com/product/3345

• DHT11 sensor: https://www.adafruit.com/product/386

• LCD kit (requires soldering): https://www.adafruit.com/product/772
• www.microcenter.com

353.pdf

http://www.suncam.com/
http://a.co/9Db81gF
https://www.sparkfun.com/products/14418
https://store.arduino.cc/usa/arduino-starter-kit
https://www.adafruit.com/product/3345
https://www.adafruit.com/product/386
https://www.adafruit.com/product/772
http://www.microcenter.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 7 of 58

If you have difficulty finding a particular part and want to use a substitute, check the
class’ Github page to see if there are diagrams and sketches for alternate parts.

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 8 of 58

What is Arduino?
Arduino is an open source platform for developing programmable electronics. The
Arduino platform consists of three components: circuit boards, Arduino IDE (integrated
development environment), and code. The Arduino boards have a microcontroller,
which is a microprocessor with integrated memory and peripherals.

Arduino is also the name of the company in Italy that develops the Arduino boards and
the IDE. The founders of Arduino wanted to make building things with microcontrollers
easy enough to use to the point where non-technical people like artists could quickly get
code running on a board. Before Arduino,

Arduino has become very popular due to a few important factors.

1. The boards are inexpensive and do not require specialized hardware. The
barrier to entry used to be higher for embedded development, because a chip
programmer or an in-circuit debugger had to be purchased in addition to the
development board. One minor drawback is that Arduino boards typically do
not have dedicated hardware for debugging, like JTAG, so debugging is done
by printing to the serial console.

2. Writing code for Arduino is easy. Arduino code hides all the details particular to
each microcontroller's architecture, so the same code will run on different
microcontrollers with little or no modifications. This greatly simplifies coding for
users. Code is written in the Arduino IDE, and the IDE runs on Windows, Mac,
Linux, and the web. This makes coding for Arduino available to everybody with
a computer.

3. There is a large ecosystem of expansion boards, called "shields." Shields plug
in to Arduino boards in order to add capabilities like ethernet, stepper motor
drivers, temperature and humidity sensors, wifi, battery charging, OLED
screens, and more.

4. The hardware designs are open source, so anyone can manufacture their own
Arduino-compatible boards. The circuit schematics and board layout files are
available for you to download and use.

5. There is a ton of published open source projects, with code and schematics
included. You can repurpose existing designs for your own needs.

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 9 of 58

Applications in Arduino are called "sketches". Writing a new sketch is very
straightforward; there is minimal setup required to get a working sketch.

353.pdf

http://www.suncam.com/

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 10 of 58

Arduino Uno and Other Arduino Boards
For this class we use the Arduino Uno. There are many variants of Arduino boards
available. They come with different microcontrollers and configurations for specialized
purposes. Some are specialized for IoT (internet of things), wearable (electronics
embedded in clothing), motor control, or a multitude of other purposes. All the official
Arduino board designs are fully open sourced.

The Uno has the following features:
• Processor: ATMega328P microcontroller made by Microchip

• Flash memory: 32KB

• RAM: 2KB of SRAM

• Digital I/O: 14 digital I/O pins, six of which provide PWM output

• Analog inputs: 10 bit analog inputs, 0 to 5V

• Clock speed: 16 MHz crystal oscillator (some clones are clocked at 12 MHz)

• Operating Voltage: 5V

• EEPROM: 12KB

• Input Voltage: 7 to 12V in the DC power jack

The datasheet for the ATMega328P is here:
https://www.microchip.com/wwwproducts/en/ATmega328P

353.pdf

http://www.suncam.com/
https://www.microchip.com/wwwproducts/en/ATmega328P

Introduction to Arduino

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Benjamin Tyler Page 11 of 58

Figure 1 UNO Board

Many of the I/O pins are multiplexed with different functionalities like digital, analog, and
serial. The pins are configured in code to act as inputs or outputs and digital or analog.
The digital I/O pins are tristate logic. That means that the pins can output high or low
logic voltages, and in input mode they are high impedance.

The analog inputs measure continuous voltage signals. The A/D converter for on the
ATMega328P is 10 bits, so the A/D produces an integer between 0 and 1023 that
linearly corresponds with an analog signal between 0V and 5V. Pins labeled with tilde (
~) can be used as analog output. These pins actually output PWM. A low pass RC filter
can convert PWM to a true analog signal if necessary.

The I2C serial interface uses two of the analog pins, A4 and A5. Two digital pins, D0
and D1, also serve as the RX and TX pins on the UART.

See the Uno schematic here: https://www.arduino.cc/en/uploads/Main/arduino-uno-
schematic.pdf

353.pdf

http://www.suncam.com/
https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 12 of 58

Note
There are many Arduino boards to suit different uses. They are all programmed in the
same way, but have different sizes, costs, and peripherals. See here for a list of official
Arduino boards: http://www.arduino.cc/en/Main/Boards

Shields
Shields are add on boards that plug into Arduinos and provide more functionality like
GPS, Bluetooth, ethernet, stepper motor drivers, and more. Shields are designed to
plug into the header sockets on the Arduino board. Many shields pass through the
signals, so it is possible to stack shields on the Arduino. Make sure the shields and
particular Arduino board are compatible- some might have different pin assignments.
Here is a sample of shields from Sparkfun Electronics:

Figure 2 Shields from Sparkfun

Note
For an extensive list of shields along with compatibility details, see shieldlist.org.

353.pdf

http://www.suncam.com/
http://www.arduino.cc/en/Main/Boards

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 13 of 58

Arduino Code
Arduino does not have its own language, although people commonly refer to the
"Arduino language." The language used is in fact C++ and is compiled with a C++
compiler. What makes code for Arduino distinct is the core library. The Arduino core
library provides many user friendly functions that simplify the coding experience. The
core library provides an abstraction layer that hides the details of the underlying
hardware. There is a core library for each microcontroller architecture, so Arduino IDE
automatically uses the correct core library when a particular board is selected. There is
a lot of flexibility in how you can write Arduino code. Since Arduino code is compiled
with a C++ compiler, you are free to use object oriented style coding as in C++,
procedural style found in C, or a mix of the two styles.

Arduino’s core library provides high level, easy to use functions for reading and writing
I/O, math, time delays, serial communication, bit manipulation, and character
manipulation. We will use many of these functions in the following projects.

See here for an overview of the functions included in the core library:
https://www.arduino.cc/reference/en/

Arduino sketches have a distinctive structure. An empty sketch has two functions,
setup() and loop(). setup() runs once at startup. This is where code for configuring
peripherals goes. loop() runs over and over unless a stop condition is reached. An
empty sketch looks like this:

setup() {

}

loop() {

}

353.pdf

http://www.suncam.com/
https://www.arduino.cc/reference/en/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 14 of 58

Libraries
Libraries add functionality to Arduino. In addition to the main Arduino core library,
Arduino IDE comes bundled other libraries. To add a library to a sketch, used the
include command followed by the name of the library, like this:

#include <Wire.h>

With Wire.h included, the sketch can use the functions for I2C serial communication.
Several other standard libraries are included with Arduino IDE. Some other standard
libraries include:

• EEPROM – for reading and writing to nonvolatile storage. Be aware that not all
microcontrollers have real EEPROM, so this library will write to flash. Flash
memory has fewer write cycles than EEPROM, so this could pose a problem if
you need to do many writes to one memory location.

• LiquidCrystal - for controlling Hitachi HD44780-based liquid crystal displays
(LCDs). This library is for LCDs with a 4-bit or 8-bit parallel data interface.

• SD - for reading and writing SD cards

• Servo - for controlling servo motors

• SPI - for communicating with devices using the Serial Peripheral Interface (SPI)
Bus

• Stepper - for controlling stepper motors

• Ethernet - for connecting to the internet using an ethernet shield

• WiFi - for connecting to the internet using a WiFi shield. The commands in this
library are similar to the commands for the Ethernet library.

You can add more libraries to Arduino IDE by downloading existing libraries or writing
your own. In Arduino IDE, select Sketch > Import Library.

For more about libraries see: https://www.arduino.cc/en/Reference/Libraries

353.pdf

http://www.suncam.com/
https://www.arduino.cc/en/Reference/Libraries

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 15 of 58

Setting Up the Arduino IDE
The Arduino IDE has a text editor where you can write your sketches, and it lets you
upload sketches to the Arduino board. The Arduino IDE editor has several helpful
features:

• syntax highlighting

• many code examples

• reference and troubleshooting documentation

• an output pane for viewing the build process and memory usage of sketches

• a serial monitor that enables two way communication with the board

• a serial plotter for viewing board output in graphical form

Download the Arduino IDE for your system here:
https://www.arduino.cc/en/Main/Software

353.pdf

http://www.suncam.com/
https://www.arduino.cc/en/Main/Software

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 16 of 58

Figure 3 Arduino IDE Download Page

After installing, connect the Arduino board to your computer via USB. In the IDE, go to
Tools > Board, and select Arduino/Genuino Uno. Next select the communications port
the Arduino is using. Go to Tools > Ports, and select the port connected to the Uno.

To see some example projects that you can run, go to File > Examples.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 17 of 58

Two buttons in the tool bar at the top of each sketch are very useful. The check button
compiles the sketch, and the right arrow button uploads the sketch to the board. Output
from the build and upload processes show in the bottom pane. Any bugs or errors will
appear there, too.

Figure 4 IDE Window

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 18 of 58

Debugging
Debugging with Arduino is done by printing to the serial monitor. To enable the serial
monitor, click Tools > Serial Monitor.

Figure 5 Serial Monitor Screen

It is good practice to put some print statements throughout the code, so you can track
where the program is currently executing. Be aware that printing to serial is slow, so too
much printing can cause timing issues if timing needs to be tight.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 19 of 58

Sketch 1: Digital I/O and Delays
This sketch introduces two aspects of Arduino, digital I/O and timing. The digital pins
can drive things like LEDs and transistors or read the state of switches. To use a digital
I/O pin, the pin first needs to be initialized to be an input or output. Arduino boards have
the pins numbered, so use the pin's number when initializing the pin. Arduino has some
constants already defined for some boards. For example, the LED_BUILTIN is pin 13 on
the Uno board. The delay functions allow a sketch to wait for actions to complete or to
create timed sequences. We will create a Morse code blinker with a digital output and
delays.

Here are some Arduino functions related to serial communication, digital output, and
delays:

• Serial.begin(9600) initializes the serial port and sets the Baud rate at 9600.

• Serial.println(text) prints text to the serial port. You can see the printed text in
the Serial Monitor.

• pinMode(pin, MODE) initializes the pin as an output or output. The pin is an
integer. Available values for mode are INPUT, INPUT_PULLUP, and OUTPUT.
INPUT_PULLUP enables the ATMega's internal pullup, so an external pullup
resistor is not necessary.

• digitalWrite(pin, HIGH/LOW) outputs HIGH or LOW to a pin.

• delay(value) pauses the sketch for the given value of milliseconds. Be aware
that the delay() function does not let other code run at the same time.

• delayMicroseconds(value) does the same thing as delay() but delays the
sketch for the given value of microseconds.

First let’s demonstrate how we can use the above commands to make the Uno’s built-in
LED toggle every second. A pin, defined as a LED_BUILTIN is initialized as an output.
Then every second the pins state changes, and loop() repeats the state changes.

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 20 of 58

 delay(1000);
}

Let's examine a more interesting sketch that blinks Morse code for "hello world". Morse
code is used for transmitting text messages with the characters encoded as dots and
dashes (aka dits and dahs). The basic unit of time is the duration of the dot. The
duration of a dash is equivalent to three dots, the delay between letters is three dots,
and the delay between words is seven dots. There is a delay equivalent to a dot after
each dot or dash within a letter.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 21 of 58

This sketch uses the built-in LED, so no external circuit is necessary. Type or copy and
paste the following code into the text editor of Arduino IDE. Code is at
https://github.com/btyler/arduino-intro/.

/*
Morse Code Blinker
*/

/* 1 */
#define DOT (200) // delay for dot in
milliseconds
#define DASH (3 * DOT) // delay for dash
#define SPACE (DOT + 1) //delay after each dot or dash
#define LSPACE (4 * SPACE) // delay between letters
#define WSPACE (7 * SPACE)// delay between words

const int morse[] = {DOT, SPACE, DOT, SPACE, DOT,
SPACE, DOT, LSPACE, DOT, LSPACE, DOT, SPACE, DASH,
SPACE, DOT, SPACE, DOT, LSPACE, DOT, SPACE, DASH,
SPACE, DOT, SPACE, DOT, LSPACE, DASH, SPACE, DASH,
SPACE, DASH, WSPACE, DOT, SPACE, DASH, SPACE, DASH,
LSPACE, DASH, SPACE, DASH, SPACE, DASH, LSPACE, DOT,
SPACE, DASH, SPACE, DOT, LSPACE, DOT, SPACE, DASH,
SPACE, DOT, SPACE, DOT, LSPACE, DASH, SPACE, DOT,
SPACE, DOT, WSPACE}; // HELLO_WORLD_

const int length = sizeof(morse)/sizeof(morse[0]);

/* 2 */
int i = 0;

/* 3 */
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.begin(9600);
 Serial.println("HELLO WORLD in Morse code!");
}

/* 4 */
void loop() {
 if (morse[i] == DOT || morse[i] == DASH) {

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 22 of 58

 digitalWrite(LED_BUILTIN, HIGH);
 } else {
 digitalWrite(LED_BUILTIN, LOW);
 }

 delay(morse[i]);

/* 5 */
 i++;
 if (i == length) {
 i = 0;
 Serial.println("flashing HELLO WORLD again");
 }
} /* end */

Let's examine what is happening in this sketch.

1. At the top, constants are defined for the delays for the dots, dashes, and
spaces in Morse code. DOT and SPACE are supposed to be the same
length, but for the sake of simplicity 1 is added to SPACE to differentiate it
from DOT. The Morse code for "hello world" is encoded as an array of
integers in morse[]. The length of the array is computed with a common C
trick for statically allocated arrays: take the number of bytes used by the
array divided by the number of bytes used by a single array element.

2. An integer variable i stores how many times loop() has run.

3. setup() initializes the LED_BUILTIN pin to be an output. Then it initializes
the serial port and outputs a message.

4. loop() is responsible for blinking the LED. First it looks to see if the current
element of morse[] is a dot or dash. If so, the LED is turned on, otherwise
the LED is turned off. The LED then stays on or off for the time determined
by a dot, dash, space, letter space, or word space.

5. i is incremented. If i is equal to the length of the morse array, it is reset to
0 and a message prints.

A cleaner implementation of this code would probably use data structures like enums
and structs to store the Morse encodings.

Using a digital output and delays, we have sent a message by blinking an LED. The
functions in this sketch could be used to make other useful things like timers, lighting
controls, or process controls.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 23 of 58

For more information about Morse code: https://en.wikipedia.org/wiki/Morse_code

353.pdf

http://www.suncam.com/
https://en.wikipedia.org/wiki/Morse_code

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 24 of 58

Sketch 2: Button Debouncing
Buttons are electromechanical devices, and whenever a button is pressed there is some
bouncing for a short time. Bouncing can cause a button press to register several times,
so the button needs to be debounced. Other switches and relays typically have a rating
for bounce time during which switch closures need to be ignored. For this sketch we will
debounce in software, but oftentimes using some form of hardware debouncing is
appropriate.

The Arduino functions related to digital input and timing are:
• digitalRead(pin) reads the logic level of the pin, HIGH or LOW.

• millis() gives the number of milliseconds since sketch began running. The
value overflows after about 50 days for a board with a 16 MHz crystal..

• micros() gives the number the of microseconds since the sketch began
running. The value overflows after about 70 minutes for a board with a 16 MHz
crystal.

For this sketch you will need:
• momentary button

• 10k Ohm resistor

• breadboard

• male-male jumper wires (22 gauge solid core wire works, too), preferably in
red, black, and blue colors

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 25 of 58

Wire the components as shown:

Figure 6 Button Debouncing Circuit

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 26 of 58

Figure 7 Button Debouncing Schematic

Open the Debounce example sketch. It is at File > Examples > 02. Digital > Debounce.
/*
 Debounce
Each time the input pin goes from LOW to HIGH (e.g. because
of a push-button press), the output pin is toggled from
LOW to HIGH or HIGH to LOW. There's a minimum delay between
toggles to debounce the circuit (i.e. to ignore noise).

 The circuit:
 LED attached from pin 13 to ground
 pushbutton attached from pin 2 to +5V
 10k Ohm resistor attached from pin 2 to ground
Note

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 27 of 58

On most Arduino boards, there is already an LED on the
board connected to pin 13, so you don't need any extra
components for this example.
 created 21 Nov 2006 by David A. Mellis, modified 30 Aug
2011by Limor Fried
modified 28 Dec 2012 by Mike Walters
modified 30 Aug 2016 by Arturo Guadalupi
 This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/Debounce
*/

/* 1 */
// constants won't change. They're used here to set pin
numbers:
const int buttonPin = 2; // the number of the button pin
const int ledPin = 13; // the number of the LED pin

// Variables will change:
int ledState = HIGH; // the current state of the
output pin
int buttonState; // the current reading from
the input pin
int lastButtonState = LOW; // the previous reading from
the input pin

// the following variables are unsigned longs because the
time, measured in
// milliseconds, will quickly become a bigger number than
can be stored in an int.
unsigned long lastDebounceTime = 0; // the last time the
output pin was toggled
unsigned long debounceDelay = 50; // the debounce time;
increase if the output flickers

/* 2 */
void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);

 // set initial LED state
 digitalWrite(ledPin, ledState);

353.pdf

http://www.suncam.com/
http://www.arduino.cc/en/Tutorial/Debounce

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 28 of 58

}

/* 3 */
void loop() {
 // read the state of the switch into a local variable:
 int reading = digitalRead(buttonPin);

 // check to see if you just pressed the button
 // (i.e. the input went from LOW to HIGH), and you've
waited long enough
 // since the last press to ignore any noise:

 // If the switch changed, due to noise or pressing:
 if (reading != lastButtonState) {
 // reset the debouncing timer
 lastDebounceTime = millis();
 }
/* 4 */
 if ((millis() - lastDebounceTime) > debounceDelay) {
 // whatever the reading is at, it's been there for
longer than the debounce
 // delay, so take it as the actual current state:

 // if the button state has changed:
 if (reading != buttonState) {
 buttonState = reading;

 // only toggle the LED if the new button state is
HIGH
 if (buttonState == HIGH) {
 ledState = !ledState;
 }
 }
 }
/* 5 */
 // set the LED:
 digitalWrite(ledPin, ledState);

 // save the reading. Next time through the loop, it'll be
the lastButtonState:
 lastButtonState = reading;

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 29 of 58

} /* end */

Let's examine what is happening in this sketch.

1. Constants and variables are initialized here. The important things to notice
here is that there are variables to hold the button state, store the time of the
last state change, and set the debounce delay. The debounce delay should be
just long enough to avoid erroneous button presses. The initial button state is
LOW, not pressed. The LED is on.

2. setup() initializes the input and output pins, as well as driving the output high.

3. Each loop reads the state of the input pin. This is known as polling. If the new
reading of the pin's state does not match the previous state, the debouncing
timer is reset.

4. While waiting for the debounce delay, the button state is ignored. Once the
system has waited for the bounce delay, button state is then compared with
the current reading. If a button state change is detected, the button state is set
to the reading. If the button state is HIGH, meaning the button has been
depressed, and then the LED is toggled.

The method shown in this sketch is better than simply using a delay() after a state
change is detected, because a delay() blocks other work from being done. Try reducing
the debounceDelay variable to a value less than 50. At some point you will observe the
LED flicker when the button is pressed.

Now that you know how to debounce buttons, you can incorporate buttons and other
electromechanical switches into your designs.

For a comprehensive guide to debouncing: http://www.ganssle.com/debouncing.htm

353.pdf

http://www.suncam.com/
http://www.ganssle.com/debouncing.htm

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 30 of 58

Sketch 3: Analog I/O
In this sketch we will read and write analog values. Microcontrollers in Arduino boards
come with an analog to digital converter (A/D) to read analog voltages between 0V and
the power supply voltage, usually either 3.3V or 5V. The Uno comes with a 10 bit A/D
and six available analog inputs. The Uno's A/D requires about 100 microseconds to
take a sample, resulting in max sampling rate of 10 kHz.

Analog output is achieved with PWM. While PWM is not true analog, it is a close
enough approximation for many applications. The Uno has an 8 bit PWM, so a value of
0 produces a rectangular wave with a 0% duty cycle (off), and a value of 255 produces
a rectangular wave with 100% duty cycle (on). A wave with 50% duty cycle is a square
wave. The frequency of each PWM pin is determined by an internal counter and a
prescaler that divides the base frequency. Pins 5 and 6 use timer0, which runs at base
frequency of 62500 Hz. The base frequency is scaled down to about 1000 Hz for pins 5
and 6. Pins 9 and 10 use timer1, and pins 2 and 11 use timer2. timer1 and timer2 have
a base frequency of 31250 Hz, which is divided down to about 500 Hz. These slow
PWM frequencies are suitable for things like blinking an LED, but not for other things
like switching mode power supplies. See the note at the end of this lesson about
changing the PWM frequencies.

Let's examine the functions related to analog. For most applications, using only the first
two functions with the default settings is sufficient.

• analogRead(pin) - reads the analog voltage at the pin, which in the case of the
Uno is a 10 bit integer between 0 and 1023.

• analogWrite(pin, value) - outputs a PWM wave on pin. The output value is
between 0 to 255, corresponding to 0% to 100% duty cycle.

analogReference() - sets the top of the input range. Defaults to 5V for the Uno.
See https://www.arduino.cc/reference/en/language/functions/analog-
io/analogreference/

• analogReadResolution(value) - for Arduinos with more than 10 bits A/D
resolution. If the Arduino has a 16 bit A/D, set value to 16, and analogRead()
will return a value between 0 and 4095. The input value can be up to 32.

• analogWriteResolution(value) - for Arduinos with more than 8 bits PWM
resolution.

For this sketch, we need the following parts:
• 100k Ohm potentiometer

353.pdf

http://www.suncam.com/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 31 of 58

• LED

• 220 Ohm resistor

Wire the circuit as shown here:

Figure 8 Analog Circuit

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 32 of 58

This is the circuit schematic:

Figure 9 Analog Schematic

Type or copy and paste the following code into Arduino IDE. Code is at
https://github.com/btyler/arduino-intro/.

/*
 * Dimmer using Analog Input and PWM
 */

/* 1 */
const int led = 11;
const int potentiometer = A0;
int reading = 0;
int pwm = 0;

void setup() {
 pinMode(led, OUTPUT);
}

/* 2 */
void loop() {
 reading = analogRead(potentiometer);
 Serial.println(reading);
/* 3 */

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 33 of 58

 pwm = map(reading, 0, 1023, 0, 255);
 analogWrite(led, pwm);
 delay(20);
}/* end */

1. Pins for LED and potentiometer are set. Pin mode for LED pin is set.

2. Each loop, the A/D is read and then printed to the serial console.

3. The value is then scaled with the map() function to between 0 and 255. The
value is then fed to PWM output. The LED brightness is determined by the
PWM duty cycle. Finally, the loop delays for 20ms.

In case more than six PWM outputs are need, bit-banging PWM is an option. Any digital
pin can bit-bang PWM. Let's look at an example. Code is at
https://github.com/btyler/arduino-intro/.

/*
 * Bit-banging Pulse Width Modulation Example
 */
const int pin = 7;
const int period = 1000; // period is 1000us, so frequency
is 1kHz
const int onTime = 200;

void setup() {
 pinMode(pin, OUTPUT);
}

void loop() {
 digitalWrite(pin, HIGH);
 delayMicroseconds(onTime);
 digitalWrite(pin, LOW);
 delayMicroseconds(period - onTime);
} /* end */

In this example, pin 7 is toggled at 1KHz with about 20% duty cycle. This should only be
used as a conceptual example as the delayMicrosecond() calls will block other work
from being done.

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 34 of 58

In review, reading and writing analog values is easy with Arduino, because all the low
level configuration has already been done. By default, the Uno offers slow PWM
frequencies. Arduino’s PWM can be used to make things like dimmers, servo drivers,
and motor drivers.

 There is more about PWM and how to change the frequencies at the following links.

https://playground.arduino.cc/Code/PwmFrequency/

https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

353.pdf

http://www.suncam.com/
https://playground.arduino.cc/Code/PwmFrequency/
https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 35 of 58

Sketch 4: Functions, Random Numbers, and Strings
In this lesson we examine how to use functions, generate random numbers, and
manipulate strings. In addition to the standard setup() and loop() functions, you can
write other functions in sketches. Code is much easier to read and is better organized if
all the code is not put in setup() and loop(). The sketch in this lesson uses function calls
and random numbers to implement a simple guessing game.

The functions need to follow the C/C++ format:
returnType functionName(type arg1, type arg2, ...) {
 //code body;
 return value; // nothing is returned if void returnType
}

Functions can appear before or after setup() and loop(). Functions can be called before
they are defined, which is not the case in C and C++. The return type can be anything
that is also available in C++: int, float, bool, string, and others.Pointers can be used in
Arduino too, but for simplicity we will not use them in this class. If the function does not
return a value, void is used. The function and parameters should be named to make
their purpose clear and should use camelCase or snake_case consistently.

See here for more about data types available with Arduino:
https://www.arduino.cc/reference/en/#variables

Here is a brief example of using functions:
/*
Function Example
*/
void setup() {
 Serial.begin(9600);
}

void loop() {
 int duration = exampleFunction1();
 delay(duration);
 exampleFunction2();
}

int exampleFunction1() {
 return 1000;

353.pdf

http://www.suncam.com/
https://www.arduino.cc/reference/en/#variables

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 36 of 58

}

void exampleFunction2() {
 Serial.println("This is a test");
} /* end */

In the code above, exampleFunction1() has an int return type and returns the integer
1000. exampleFunction2() has a void return type, so it does not return a value.

Oftentimes we need to use random numbers. Arduino provides random() and
randomSeed(). randomSeed() initializes the pseudo random number generator. In
order to get a different sequence of generated numbers each time the sketch runs, seed
the generator with a random input like analogRead() on a floating analog pin, like this:

randomSeed(analogRead(0));

Then to get a random number call random(). To get an integer value between 0 and
MAX - 1, call

int randomNumber = random(MAX);

Note
C and C++ are zero indexed, so counting starts with zero. The range goes from zero
inclusive to MAX exclusive, which explains why we subtract one from MAX. Off-by-one
bugs often occur when zero indexing is not considered.

To get an integer between a range of MIN and MAX - 1, call
int randomNumber = random(MIN, MAX);

Let’s examine how to use strings briefly. First we examine how to analyze individual
characters, then how to use the C++ String type to create and manipulate strings. In this
lesson’s sketch, we need the Aduino board to process user input. To do this, we can
use the following Arduino functions.

• isAlpha(char) – returns true if char is a letter.
• isDigit(char) – returns true if char is a digit 0 – 9.
• isSpace(char) – returns true if char is a space.
• isPunct(char) – returns true if char is a punctuation mark.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 37 of 58

It’s important to distinguish C++ string objects from char and C-style arrays of chars.
With Arduino it is generally easier to use C++ string objects. For simplicity, we treat an
indivual characters as a char type and convert the char to a C++ String object whenever
we need to manipulate it. Now let’s create a String object using some of its common
contstructors.

String string1 = “This is a string”; // creates a String
constant
String string2 = String(‘S’); // creates a String from a
char
String string3 = String(123); // creates string from
integer

Using C++ String objects makes string manipulation easier. To concatenate two strings,
use the + operator like this:

String string4 = string1 + “, fantastic”; // string4 is
“This is a string, fantastic”

We can use the comparison operators ==, !=, >, <, >=, and <= to compare two strings,
which is useful for sorting and alphabetizing strings.

if(string1 == string2){
Serial.println(“The strings are equal!”);

}

The toInt() function lets you convert the String representation of an integer to an integer.

int number = string3.toInt();

Now let's demonstrate using functions with random() and strings. We will make a
guessing game where the user chooses a number between 1 and 5. Open the Serial
Monitor to view sketch output and to send keystrokes. Make sure to set Serial Monitor
to not send line endings, or you will have handle newlines or carriage returns. Type the
following code or copy from https://github.com/btyler/arduino-intro/.

/*
 * Guessing Game
 */

/* 1 */
void setup() {

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 38 of 58

 Serial.begin(9600);
 randomSeed(analogRead(0));
}

void loop() {
 Serial.println("Choose a number between 1 and 5.");

/* 2 */
 int randNum = getRandom();
 while(!Serial.available()) ;
 char rawGuess = Serial.read();
 int guess = analyzeInput(rawGuess);

/* 3 */
 if ((guess >= 1) && (guess <= 5)) {
 Serial.println("You chose: " + String(guess));
 } else {
 Serial.println("Number is not between 1 and 5.");
 return;
 }

/* 4 */
 Serial.println("Arduino chose: " + String(randNum));
 if (randNum == guess) {
 Serial.println("You got it!");
 } else {
 Serial.println("Bad luck!");
 }
}

/* 5 */
int getRandom() {
 return random(1, 6);
} /* end */

/* 6 */
int analyzeInput(char input) {
 if(isAlpha(input)){
 Serial.println("Input is a letter.");
 return -1;
 }

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 39 of 58

 if(isSpace(input)){
 Serial.println("Input is a space.");
 return -1;
 }
 if(isDigit(input)){
 return input - 48;
 }
 return -1;
} /* end */

Let's review what is happening in this sketch.

1. The serial port is initialized, and the random number generator is seeded with
a reading from the A/D.

2. random() generates a number between 1 and 5. Then the sketch waits for user
input from the serial port. Once a character is read from the serial port,
analyzeInput() is called with the character as the function’s argument.

3. Check if the input is between 1 and 5. If so, a message prints with the user
input. Otherwise, the sketch skips to the next loop iteration by calling return.

4. The guess valued is compared with the machine generated random number. If
they match, a congratulatory message is printed to the Serial Monitor.

5. The user input is tested to see if it a letter or space. If either of those is true,
the function returns -1, which is outside the range 1 to 5. If the input is a digit, it
is converted to an integer. In the ASCII character set, the char representation
of digits starts where ‘0’ is defined at 48, or hexadecimal 0x30. To get an
integer value of an ASCII digit, subtract 48 from the char value.

Keep in mind this sketch is contrived to demonstrate a few concepts, not for efficiency.
Some of the key concepts covered are: using functions other than setup() and loop(),
using random(), using C++ strings, how to skip to the next iteration of loop(), and
reading serial input.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 40 of 58

Sketch 5: Interrupts
In the button debouncing sketch above, we used polling to detect when the button state
changes. Reading an input with a loop wastes processor time. Interrupts provide a
more responsive way to detect a button press or sensor output. Interrupts tell the
microcontroller to stop what it is doing and to execute code in the interrupt service
routine (ISR).

The Uno has two available interrupts on pins 2 and 3. Other Arduino boards have more
interrupts available.

To use an interrupt first attach the interrupt to a pin:
attachInterrupt(digitalPinToInterrupt(pin), ISR, TRIGGER);

attachInterrupt() does not take a pin number directly; it needs the number of an
interrupt. digitalPinToInterrupt() gets the number of an interrupt associated with a pin.
ISR is the name of the function that handles interrupts. Do not put a lot of code in the
ISR. It needs to be fast and not block the rest of the program.

The ISR can trigger on four possible events:
• LOW triggers when the pin is low.

• RISING tiggers when the pin transitions from low to high.

• FALLING triggers when the pin transitions from high to low.

• CHANGE triggers any time the pin's value changes.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 41 of 58

Use the same circuit as in the Debounce sketch above. Now let's use an interrupt. Type
or copy and paste the following code into Arduino IDE. Code is at
https://github.com/btyler/arduino-intro/.

/*
 * Interrupt Example
 */

/* 1 */
const int interruptPin = 2;
int ledState = LOW; // the current state of the
output pin

/* 2 */
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(interruptPin, INPUT);
 attachInterrupt(digitalPinToInterrupt(interruptPin),
handler, HIGH);
}

/* 3 */
loop() {
 digitalWrite(LED_BUILTIN, ledState);
}

/* 4 */
void handler() {
 ledState = !ledState;
} /* end */

Let’s examine what is going on in this sketch.

1. First the input pin and the initial LED state are set.

2. Pins are set as output and input. An interrupt is attached to pin 2.

3. ledState, HIGH or LOW, is written to the pin.

4. Every time the button is pushed, the handler() function runs. The LED state is
toggled. Note that the switch is not debounced for this example, so the LED
might toggle erratically.

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 42 of 58

In case you ever need to run critical code that cannot be interrupted, use nointerrupts()
before the critical code to disable interrupts. To re-enable interrupts, use interrupts().

For both of the button related sketches, we used an external resistor to pull down the
input pin to ground. The ATMega microcontroller has built-in pullup resistors of 20K
Ohm or more. In the case where using the microcontroller's internal pullups is desired,
use pinMode(pin, INPUT_PULLUP) to enable the internal pullups. Be aware that
external circuits on pins with internal pullups can divide the voltage down under 5V,
making the input read LOW.

In review, interrupts provide a way to respond to events with the lowest delay possible
without wasting processor time. Interrupt services routines should be as short as
possible so the sketch can return to executing other code.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 43 of 58

Sketch 6: I2C and External Libraries
In this lesson we will cover the I2C serial bus and how to use external libraries. With
some help from libraries, we will make a thermometer with a digital display.

First let's start with the I2C bus. It is a lower speed serial bus that is used to connect to
peripheral chips over short distances. Its speed ranges from 100 kbit/s to 5 Mbits/s. It
can be implemented in hardware or software. I2C requires two lines, SCL and SDA.
SCL carries the clock signal, and SDA handles the data. It uses a master-slave layout,
and a master can communicate with several slave devices on the same bus. Each slave
device has a 7-bit or 10-bit address. A master initiates transmitting by sending a START
signal followed by the slave address. After the address the master sends a bit to
indicate a write (0) or read (1). The slave replies with an ACK. Then the master sends or
receives data as indicated by the write/read bit. The slave carries out the complimentary
action and then sends an ACK. The master can continue a transaction of writes or
reads by continuing to send bytes or receive them and sending an ACK back to the
slave. The master ends the message with a STOP signal. The Uno has a I2C bus in
hardware. Pin A4 is SDA, and Pin A5 is SCL. To demonstrate I2C in action, let's put
together the hardware for this lesson.

For this lesson, we need the following parts:
• 3 or 4 pin DHT11 temperature and humidity sensor

• 10k resistor if DHT11 has 4 pins

• 1602 LCD with I2C interface (Hitachi HD44780 LCD with PCF8574A I2C
module)

• 4 male-female jumper wires, breadboard, 5 male-male jumper wires OR 7
male-female jumper wires (wire components directly to Uno and power the
DHT11 with 3.3V instead of 5V from Uno)

Note
If the LCD has a parallel interface, not I2C, see the class code repository for alternate
code and diagrams. https://github.com/btyler/arduino-intro/

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 44 of 58

If using the 4 pin DHT11, wire the components as in this diagram:

Figure 10 4-Pin, I2C Serial Bus Components

For the 3 pin DHT11:

Figure 11 3-Pin, I2C Serial Bus Components

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 45 of 58

The schematic with 4 pin DHT11:

Figure 12 4-Pin, I2C Serial Bus Schematic

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 46 of 58

Schematic with 3 pin DHT11:

Figure 13 3-Pin, I2C Serial Bus Schematic

Let's examine a few of the functions available with Wire.
• Wire.begin(address) - Initiate the Wire library. If the address is given, join the

I2C bus as a slave at that address. If no address, join the I2C bus as master.

• Wire.beginTransmission(address) - Start transmitting to the I2C slave device
at address.

• Wire.write(value OR string OR data, length) - If device is a slave, write data
to bus in response to master. If device is a master, queue data for transmission.

• Wire.endTransmission() - Ends transmission to a slave device and transmits
data queued by Wire.write() - This function returns one byte indicating the
status of the transmission.

• Wire.requestFrom(device, length) – used by the master to request the
number of bytes “length” from the address of the device.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 47 of 58

• Wire.read() – receives a byte and then the byte is returned by the function.
The byte can be interpreted as a char or int.

• Wire.available() – returns the number of bytes waiting to be read.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 48 of 58

Let's examine a sketch using Wire, an I2C scanner. Run the following code with the
Serial Monitor open. Code is at https://github.com/btyler/arduino-intro/.

/*
 * I2C Scanner
 */

/* 1 */
#include <Wire.h>

/* 2 */
void setup() {
 int deviceCount = 0;
 Serial.begin(9600);
 Wire.begin();
 while (!Serial);
 Serial.println("Beginning scan");

/* 3 */
 for(int address = 1; address < 127; address++) {
 Wire.beginTransmission(address);
 int result = Wire.endTransmission();

/* 4 */
 if (result == 0) {
 Serial.print("I2C device at 0x");
 Serial.print(address, HEX);
 deviceCount++;
 }
 }

/* 5 */
 if (deviceCount == 0) {
 Serial.println("No I2C devices found\n");
 }
}

/* 6 */
void loop() {} //empty loop
/* end */

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 49 of 58

1. The Wire library is included. The Wire library is already installed with Arduino
IDE.

2. All the code is going into setup(), so it only runs once. The variable
deviceCount stores the number of devices found. Serial communications is
initialized, and the sketch waits for it to be ready.

3. A for-loop cycles through all the possible addresses between 1 and 127.
Wire.beginTransmission() and Wire.endTransmission() are called to get a
response from each address.

4. If transmission to an address is a success, the result is printed to the Serial
Monitor, and deviceCount is incremented.

5. If no devices are found, a messages is printed to the Serial Monitor.

6. No code is inside loop(). loop() will simply run forever doing nothing after
setup() has run the code once.

The sketch will not find any devices yet if the Uno is not connected to anything. With the
circuit we built above, the sketch should find one device, the LCD.

Arduino IDE comes with many libraries built-in, but sometimes it is necessary to install
more libraries. Oftentimes libraries are used for device drivers, and in our case we need
drivers for the DHT11 temperature/humidity sensor and for the 1602 LCD. The 1602
LCD driver is built on the Wire library. Wire comes with Arduino IDE and provides an
easy to use interface for I2C. While we will not use Wire in the later sketch, the LCD
driver we will use is based on Wire.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 50 of 58

Now we need to import two libraries. In Arduino IDE, go to Sketch->Include Library->
Manage Libraries. In the Library Manager, type "SimpleDHT" and install it. The list of
libraries should filter down to a few choices. Next, install "LiquidCrystal I2C" by Frank de
Brabander.

Figure 14 Library Window

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 51 of 58

The SimpleDHT library makes using the DHT11 sensor very straight forward. To use
the library, include it with, and then create a SimpleDHT11 object. Assign a pin for
communicating with the sensor. In our case, it is pin 7. Create two variables for
temperature and humidity. Then use the read() function, with the address of the two
variables passed as parameters. A minimal working program looks like this:

/*
 * DHT11 Demo
 */
#include <SimpleDHT.h>

/* 1 */
byte temperature = 0;
byte humidity = 0;
const int pin = 7;
SimpleDHT11 dht11;

void setup() {
 Serial.begin(9600);
}

void loop() {

/* 2 */
 if (dht11.read(pin, &temperature, &humidity, NULL)) {
 Serial.print("Error reading DHT11.");
 return;
 }

/* 3 */
 Serial.print(String(temperature) + " *C, ");
 Serial.print(String(humidity) + " %");
 delay(5000);
} /* end */

Let’s look at what is happening in this sketch.

1. Variables for temperature and humidity need to be 8 bits, so the byte type is
used.

2. If there is an error with read(), read returns an error message is printed to
Serial Monitor.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 52 of 58

3. The variables are converted to strings, concatenated with related text, and
then printed to Serial Monitor.

Now let's briefly examine the Liquid Crystal I2C library. First, the LiquidCrystal_I2C
object needs to be initialized with the LCD's address, the number of characters per line,
and the number of lines. Here are some functions that can be used:

• init() - Initializes the LCD driver.

• backlight() - Turns on the backlight LED.

• print(text) - Prints text to the LCD.

• home() - Returns the cursor to position 0,0 of the LCD.

• clear() - Clears all contents and settings of the LCD.

• setCursor(x, y) - Moves the cursor to the xth position in the line and to the yth
line. x and y indexes start from 0.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 53 of 58

Now let's look at a simple sketch that uses the LCD. Code is at
https://github.com/btyler/arduino-intro/.

/*
 * 1602 LCD Demo
 */
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

/* 1 */
LiquidCrystal_I2C lcd(0x27,16,2);

void setup() {
 Serial.begin(9600);
 lcd.init();
 lcd.backlight();
 lcd.print("I love Arduino!");
}

void loop() {}
/* end */

[1] The LiquidCrystal_I2C object is created and initialized with the address to 0x27, 16
chars, and 2 lines. 0x27 is the address for LCDs with the PCF8574 chip. LCDs with the
PCF8574A chip have the address is 0x3F. You should have seen one of these values
with the I2C scanner sketch above. Use 0x3F if you have the PCF8574A chip.

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 54 of 58

Now that we have used the DHT11 sensor and the 1602 LCD, let's combine them to
make a thermometer with a display. Code is at https://github.com/btyler/arduino-
intro/.

/*
 * Digital Thermometer with LCD
 */
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <SimpleDHT.h>

byte temperature = 0;
byte humidity = 0;
const int pin = 7;
SimpleDHT11 dht11;
LiquidCrystal_I2C lcd(0x27,16,2);

void setup() {
 Serial.begin(9600);
 lcd.init();
 lcd.backlight();
}
void loop() {
 if (dht11.read(pin, &temperature, &humidity, NULL)) {
 Serial.print("Error reading DHT11.");
 return;
 }
 string text = String(temperature) + " *C, \n" +
String(humidity) + " %");
 lcd.print(text);
} /* end */

Now you have experience importing libraries and using them. There is a vast ecosystem
of libraries available for you to use in your projects.

For more information, see these links.
• I2C bus: https://www.i2c-bus.org

• DH11 Datasheet: https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf

• HD44780 Datasheet:
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

353.pdf

http://www.suncam.com/
https://github.com/btyler/arduino-intro/
https://github.com/btyler/arduino-intro/
https://www.i2c-bus.org/
https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 55 of 58

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 56 of 58

Using an Arduino In Production
While Arduino is better suited for prototyping, using it in production is viable. Leveraging
the design effort that has gone into the Arduino ecosystem can save a lot of time and
money, but you should be aware of some of the caveats.

If your company has a problem with using GPL code in production or a similar issue
with other licenses, make sure to audit the libraries your project includes to make sure
they align with business needs. If a license requires code to be published, that might
affect commercial viability of a product.

Another consideration for libraries included in a product is code quality. Libraries have a
wide range of code quality, and so you must determine if the code you are using is
robust enough for production. Some issues, like poor memory management, might not
pop up until the devices has run for an extended time. Ultimately it is up to you to
determine whether or not the code is suitable for production.

Debugging things like memory leaks in sketches by printing to serial can be arduous,
and Arduino IDE only offers this limited debugging method. Atmel Studio for offers
JTAG debugging and can be used with AVR and SAM microcontrollers. Debugging with
JTAG allows you to step through the code and view memory contents, very useful for
debugging. Another alternative development environment is PlatformIO, which runs on
top of Microsoft VSCode. PlatformIO has advanced debugging features available.

Arduino might become too limiting for your application, or Arduino might not be well
supported for the microcontroller in your project. In that case, it might be preferable to
use the native SDK for that chip. The setup() and loop() structure of a sketch might not
suit an application well. If you are fighting the Arduino architecture or you need to deal
with low level details abstracted by Arduino, maybe using the native SDK is preferable.
If there is a possibility of more complexity being added to the project later, that is
something to be considered. For example, if the code needs to do several different
tasks, perhaps a RTOS (real-time operating system) with native SDK is better suited for
the application.

It is likely you will want to design a custom circuit board for your application. The
designs for all the Arduino boards are public, so they are a good starting point for your
designs. Reusing designs will save time and effort. Components from the Arduino
boards and shields could be put on one custom circuit board to save costs.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 57 of 58

In conclusion, using Arduino in production is feasible, even advantageous, if the code
fits within Arduino's structure and level of hardware abstraction. It's up to you to
determine if the included library code is good enough and free of legal problems.

353.pdf

http://www.suncam.com/

Rapid Electronics Prototyping with Arduino Introduction to Arduino

www.SunCam.com Copyright 2019 Benjamin Tyler Page 58 of 58

Conclusion
In this course we have explored what the Arduino platform is and how to use it. We
have covered digital I/O, analog I/O, serial communication, interrupts, and using
imported libraries. You now have the foundation to make some gadgets by harnessing
all the resources Arduino provides. I hope you have enjoyed the course and gotten
something out of it.

If you have any questions, comments, or suggestions feel free to email me at
tyler@bxtel.com.

353.pdf

http://www.suncam.com/

	Introduction
	Author Introduction
	Suggested Course Materials
	What is Arduino?
	Arduino Uno and Other Arduino Boards
	Shields
	Arduino Code
	Libraries
	Setting Up the Arduino IDE
	Debugging
	Sketch 1: Digital I/O and Delays
	Sketch 2: Button Debouncing
	Sketch 3: Analog I/O
	Sketch 4: Functions, Random Numbers, and Strings
	Sketch 5: Interrupts
	Sketch 6: I2C and External Libraries
	Using an Arduino In Production
	Conclusion

