

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page i of 21

State Machines

by

Mark A. Strain, P.E.

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page ii of 21

Table of Contents

Introduction ... 1
Description of a State Machine ... 1
State Machine Model .. 2

Components of a State Machine ... 2
State Diagram.. 3
State Table .. 4

Block Diagram .. 4
Mealy and Moore Machines ... 6

Mealy Machine ... 6

Moore Machine ... 9
Implementation ... 13

Hardware Implementation .. 13
Software Implementation .. 15

Summary ... 17

References ... 19

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 1 of 21

Introduction
An electronic lock, a vending machine, a subway turnstile, a control panel for a

microwave oven, a spell checker, a text search application, and the core of a

microprocessor all embody a common element. Their behavior can be modeled

using a finite state machine. Inputs to the system from the real world may affect

the state of the system and possibly the output of the system. The behavior of the

system is predetermined from its design. All possible outputs and states are

designed into the system given any possible input. Therefore, the system is very

predictable (assuming all possible state/input/output combinations have been

designed into the system). A state machine is one of the most common building

blocks of modern digital systems [1].

Description of a State Machine
A finite state machine is a model used to describe the behavior of a real world

system. It is a mathematical abstraction used to design digital logic or computer

programs [3]. It is a model of behavior composed of a finite number of states,

transitions, actions, inputs and outputs [3].

The National Institute of Standards and Technology (NIST) defines a finite state

machine as

A model of computation consisting of a set of states, a start state, an

input alphabet, and a transition function that maps input symbols and

current states to a next state. Computation begins in the start state with

an input string. It changes to new states depending on the transition

function [2].

Finite state machines are finite in that the number of states used to describe a

particular system is limited, i.e., not infinite. The term “finite” is understood since

an infinite state machine would be impractical (perhaps even impossible) to model.

Hence, they are usually referred to as state machines, also as finite state automaton.

The output of a state machine depends on the history of the system (or current state

of the system). However implemented, whether discrete hardware or computer

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 2 of 21

program, a state machine has a finite amount of internal memory to implement the

system.

State machines are used to solve a large number of problems. They are used to

model the behavior of many different kinds of systems, for example:

• A user interface with a keypad and display (like a microwave oven

controller)

• An electronic lock containing a keypad

• A communications protocol that parses the symbols as they are received

• A program that performs a text search (or searches for patterns in strings)

Once the model or state machine is established, the behavior of the system is better

understood simply by studying the state diagram.

State Machine Model

Components of a State Machine
A state machine is composed of two or more states. A state stores information

about the past and reflects changes from the start of the system to the present state.

The current state is determined by past states of the system.

Figure 1 - a single state, S0, in a state machine

A transition indicates a change from one state to another.

Figure 2 - a transition from state S0 to state S1 as a result of an input of 1

S
0

S̀
0

S
1

1

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 3 of 21

An output, also called an action is a description of an activity that is to be

performed as a result of an input and change of state. An output can be depicted

either on the transition (the arrow) or within the state.

Figure 3 - the output is shown on the transition after the input: input/output

Figure 4 - the output is shown within the state - output is a function of the current state

State Diagram
A state diagram describes a state machine using a graphical representation.

Figure 5 - state diagram

S̀
0

S
1

1 / 0

1

S
0

0
S

1

1

S
0

S
1

1

0

0 1

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 4 of 21

State Table
A state transition table (or state table) describes a state machine in a tabular format.

Present State Next State

x = 0 x = 1

S0 S0 S1

S1 S0 S1

(where x is the input)

Figure 6 - state table

This simple model exemplifies a door lock that embodies two states: LOCKED

(S1) and UNLOCKED (S0) and two possible inputs: LOCK (1) and UNLOCK (0).

If the door is in the UNLOCKED state and an input of LOCK is presented, the

state machine progresses to the LOCKED state. If an input of LOCK is presented

to the machine in the LOCKED state the machine stays in the LOCKED state.

 where

 S0 is unlocked (state)

 S1 is locked (state)

 x = 0 to unlock (input)

 x = 1 to lock (input)

To summarize, a state machine can be described as:

• A set of possible input events

• A set of possible output events

• A set of states

• An initial state

• A state transition function that maps the current state and input to the next

state

• A function that maps states and input to output

Each bubble in a state diagram represents a state, and each arrow represents a

transition from one state to another. Inputs are shown next to each transition arrow

and outputs are shown under the inputs on the transitions or inside the state bubble.

Block Diagram

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 5 of 21

Memory is used to store the current state of the state machine. When developing a

machine using a hardware architecture, flip-flops are used as the memory device.

The number of flip-flops required is proportional to the number of possible states

in the state machine.

of states ≤ 2x

(where x is the number of flip-flops required for the state machine)

or

x ≥ ln (# of states) / ln 2

Now, round x up to the nearest integer.

A state machine can be viewed generally as consisting of the following elements:

combinational logic, memory (flip-flops or registers), inputs and outputs.

Figure 7 - general block diagram of a state machine

Memory is used to store the state of the system. The combinational logic can be

viewed as two distinct functional blocks: a next state decoder and an output

decoder [4].

Figure 8 - block diagram of a state machine showing the next state and output decoders

The next state decoder computes the machine’s next state and the output decoder

computes the output.

Combinational
Logic

Memory

Output(s)

Input(s)

Next State
Decoder Memory

Output
Decoder Output(s)Input(s)

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 6 of 21

Mealy and Moore Machines
Two architectures for state machines include Mealy machines and Moore

machines. Each is differentiated by their output dependencies. A Mealy machine’s

output depends on the input and the current state. A Moore machine’s output

depends only on the current state.

Mealy Machine
The advantage of a Mealy machine is in its implementation. A Mealy machine

often results in a reduced number of states. The output of a Mealy machine

depends on the input and the current state. Therefore the output will be coupled

with the input and depicted on the transition between states as shown in Figure 3.

The following example is a sequence detector for the sequence {1 0 1}. It is

implemented with a Mealy machine.

Figure 9 - state diagram of {1 0 1} sequence detector implemented with a Mealy machine

Present State Next State

x = 0 x = 1

Output

x = 0 x = 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

S̀
0

S
1

1 / 0

S
2

1 / 00 / 0

0 / 0

1 / 1

0 / 0

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 7 of 21

(where x is the input)

Figure 10 - state table for above sequence detector

This state machine may be implemented in a number of ways. Consider a hardware

implementation using combinational logic and D flip-flops. Since there are three

states: S0, S1 and S2, two bits will be required to encode the states thus requiring

two D flip-flops. Let the present state be represented by Q1Q2 and the next state as

the flip-flop equations D1D2. The output will be represented as the variable Z. The

state table now encoded in binary becomes:

Q1Q2 D1D2

x = 0 x = 1

Z

x = 0 x = 1

0 0 0 0 0 1 0 0

0 1 1 0 0 1 0 0

1 0 0 0 0 1 0 1

(where x is the input,

Q1Q2 is the present state,

D1D2 is the next state,

and Z is the output)

Figure 11 - state table encoded in binary

For D flip-flops, the characteristic equation translates to Q+ = D.

In another form the state table becomes

Q1Q2x D1 D2 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 - - -

1 1 1 - - -

Figure 12 - another form of state table

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 8 of 21

Using Karnaugh maps to reduce the minterms and simplify the equations:

Figure 13 - Karnaugh map of D1, D2, and Z equations

The implementation of the sequence detector {1 0 1} using a Mealy machine

architecture becomes

 0 1 x 0

 0 0 x 0

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 x 0

 1 1 x 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 x 0

 0 0 x 1

 00 01 11 10

0

1

Q
1
Q

2

x

D
1

D
2

Z

D
1
 = x'Q

2

D
2
 = x

Z = xQ
1

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 9 of 21

Figure 14 - hardware implementation of Mealy machine

Figure 15 - block diagram of Mealy machine

Moore Machine
The advantage of a Moore machine is a simplification of behavior. The output of a

Moore machine depends only on the current state. Therefore, the output is coupled

with a state and is depicted within the bubble of the state as shown in Figure 4. The

following example is the same {1 0 1} sequence detector as shown above but

implemented here as a Moore machine.

D Q

D Q

Q
1

Q
2

Z

CLK

X

Next State
Decoder Memory

Output
Decoder Output(s)Input(s)

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 10 of 21

Figure 16 - state diagram of {1 0 1} sequence detector implemented with a Moore machine

Present State Next State

x = 0 x = 1

Output

S0 S0 S1 0

S1 S2 S1 0

S2 S0 S3 0

S3 S2 S0 1

(where x is the input)

Figure 17 - state table for above sequence detector

As in the other example consider a hardware implementation using combinational

logic and D flip-flops. Here there are four states: S0, S1, S2 and S3, and still only 2

bits are needed to define all of the states. This will require two D flip-flops. The

present state will be represented as Q1Q2 and the next state will be represented by

the flip-flop equations D1D2. The output will be represented by the variable Z. The

state transition table now encoded in binary becomes

1

S
0

0

S
1

0

S
2

0

S
3

1

0 1

0

0

0

1

1

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 11 of 21

Q1Q2 D1D2

x = 0 x = 1

Z

0 0 0 0 0 1 0

0 1 1 0 0 1 0

1 0 0 0 1 1 0

1 1 1 0 0 0 1

(where x is the input,

Q1Q2 is the present state,

D1D2 is the next state,

and Z is the output)

Figure 18 - state table encoded in binary

or simply

Q1Q2x D1 D2 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 0 0 1

Figure 19 - another form of state table

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 12 of 21

Using Karnaugh maps to simplify the equations:

Figure 20 - Karnaugh map of D1, D2, and Z equations

The implementation of the {1 0 1} sequence detector using a Moore machine

architecture becomes

 0 1 1 0

 0 0 0 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 0 0

 1 1 0 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 1 0

 0 0 1 0

 00 01 11 10

0

1

Q
1
Q

2

x

D
1

D
2

Z

D
1
 = x'Q

2
 + xQ

1
Q

2
'

D
2
 = xQ

1
' + xQ

2
'

Z = Q
1
Q

2

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 13 of 21

Figure 21 - hardware implementation of Moore machine

Figure 22 - block diagram of Moore machine

Implementation

Hardware Implementation
A disadvantage of the pure hardware implementation of the state machine using

hardwired gates and flip-flops is that the design is difficult to modify once it is

committed to copper. Another drawback of the discrete hardware implementation

is that it requires significant circuit board area. It is also difficult to debug if there

is anomalous behavior. The greatest advantage of a pure hardware implementation

is that a hardware realization is very fast compared to a software implementation.

D Q

D Q

Q
1

Q
2

Z

CLK

X

Next State
Decoder Memory

Output
Decoder Output(s)Input(s)

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 14 of 21

Another form of hardware implementation uses a schematic capture program or a

Verilog implementation to produce a binary file which is loaded onto a field

programmable gate array (FPGA). This architecture typically requires less board

space. However, the schematic capture architecture is sometimes difficult to debug.

It is easier to modify the design after it has been committed to copper. To modify,

the schematic or the Verilog firmware is modified and rebuilt and the FPGA is

reprogrammed.

The following state table is the Mealy implementation of the {1 0 1} sequence

detector

Present State Next State

x = 0 x = 1

Output

x = 0 x = 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

(where x is the input)

Figure 23 - {1 0 1} sequence detector example

Here is an example of a Verilog realization of the above state machine

module mealy_fsm (clk, reset, out)

input clk;

input reset;

output out;

reg [1:0] state;

reg out;

parameter S0 = 2'd0,

 S1 = 2'd1,

 S2 = 2'd2;

always @(posedge clk)

begin

 if (reset) // this is sync reset, not async reset

 begin

 state <= S0;

 out <= 1'b0;

 end

 else

 begin

 case (state)

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 15 of 21

 S0:

 if (x == 1'b1)

 begin

 state <= S1;

 out <= 1'b0;

 end

 else

 begin

 state <= S0;

 out <= 1'b0;

 end

 S1:

 if (x == 1'b1)

 begin

 state <= S1;

 out <= 1'b0;

 end

 else

 begin

 state <= S2;

 out <= 1'b0;

 end

 S2:

 if (x == 1'b1)

 begin

 state <= S1;

 out <= 1'b1;

 end

 else

 begin

 state <= S0;

 out <= 1'b0;

 end

 default:

 begin

 state <= S0;

 out <= 1'b0;

 end

 endcase

 end

end

endmodule

Software Implementation
State machines may also be implemented in software using the C programming

language. The code is compiled with a compiler resulting in a binary file which is

loaded onto a microprocessor or microcontroller.

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 16 of 21

A state machine implementation using a software architecture is significantly

easier to debug than a hardware implementation using discrete flip-flops and

combinational logic. Software is easier to modify than hardware. Simply modify

the code, recompile and reload the binary on the microprocessor. Also, the

software implementation may be more flexible than the hardware design; it may be

ported to different hardware platforms.

The main disadvantage of the software implementation is that it may be slower

than the hardware implementation.

The following state table is the Mealy implementation of the same {1 0 1}

sequence detector shown above.

Present State Next State

x = 0 x = 1

Output

x = 0 x = 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

(where x is the input)

Figure 24 - {1 0 1} sequence detector example

Here is an example of a C programming language realization of the above state

machine

typedef enum

{

 S0,

 S1,

 S2

} StateType;

void MealyFSM(StateType *state,

 int x,

 int *out)

{

 switch (*state)

 {

 case S0:

 if (x == 0)

 {

 *state = S0;

 *out = 0;

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 17 of 21

 }

 else

 {

 *state = S1;

 *out = 0;

 }

 break;

 case S1:

 if (x == 0)

 {

 *state = S2;

 *out = 0;

 }

 else

 {

 *state = S1;

 *out = 0;

 }

 break;

 case S2:

 if (x == 0)

 {

 *state = S0;

 *out = 0;

 }

 else

 {

 *state = S1;

 *out = 1;

 }

 break;

 default:

 *state = S0;

 *out = 0;

 break;

 }

}

Summary
A state machine is a model used to describe the behavior of a real world system.

State machines are used to solve a large number of problems. They are used to

model the behavior of various types of devices such as electronic control devices,

509.pdf

http://www.suncam.com/

State Machines

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain, P.E. Page 18 of 21

parsing of communications protocols and programs that perform text or pattern

searches.

State machines may be described using a state diagram and a state table. A state

diagram is composed of states, inputs, outputs and transitions between states. A

state table describes a state machine with the present state and input on the left and

the next state and output on the right.

State machines may be implemented using either a hardware architecture or a

software architecture. The advantage of a hardware implementation is that it

operates very fast, but it is difficult to modify and usually requires more circuit

board space. The advantage of a software implementation is that it is easier to

design and modify, but can be slower than the hardware equivalent.

509.pdf

http://www.suncam.com/

A SunCam online continuing education course

References

1. “A New Paradigm for Synchronous State Machine Design in Verilog.”

visited 1 November 2010 <http://ideaconsulting.com/smv.pdf>

2. “Finite State Machine – National Institute of Standards and Technology.” 12

May 2008 <http://xw2k.nist.gov/dads/HTML/finiteStateMachine.html>

3. “Finite-State Machine – Wikipedia, the Free Encyclopedia.” 8 July 2010

<http://en.wikipedia.org/wiki/Finite-state_machine>

4. “State Machine Design.” June 1993

<http://www.mil.ufl.edu/4712/docs/PLD_Basics/StateMachineDesign.pdf>

5. “State Machines.” 8 September 2010

<http://www.xilinx.com/itp/xilinx4/data/docs/xst/hdlcode15.html>

6. “UML Tutorial: Finite State Machines.” June 1998

<http://www.objectmentor.com/resources/articles/umlfsm.pdf>

509.pdf

http://ideaconsulting.com/smv.pdf
http://xw2k.nist.gov/dads/HTML/finiteStateMachine.html
http://en.wikipedia.org/wiki/Finite-state_machine
http://www.mil.ufl.edu/4712/docs/PLD_Basics/StateMachineDesign.pdf
http://www.xilinx.com/itp/xilinx4/data/docs/xst/hdlcode15.html
http://www.objectmentor.com/resources/articles/umlfsm.pdf

