096-Building Mechanical Integrity Programs into New Plants
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Mechanical Integrity (MI) is the process of assuring equipment is in satisfactory condition to safely and reliably perform its intended purpose. MI is more than a set of inspection programs, as it should have an affect on design basis of the plant, operational procedures and maintenance procedures.
The most effective method to implement MI is to define the goals in the Conceptual Design phase, and to develop strategies to reduce the Risk of Failure, and to reduce the Consequences of Failure. With this basis, a body of knowledge is available during the design, construction, commissioning, operational and maintenance phases of a plant to assist technical personnel in accurately assessing the condition of the equipment during the operational phase.
This course describes the necessary processes and approaches to define the end goals, and to assure the goals are achieved. By taking this course, the student should understand:
- History of MI implementation
- Reasons that MI should be implemented during the Conceptual Design phase
- Available technical resources
- Driving Factors for MI implementation
- Problem areas to be avoided
- Implementation strategies
066-Ball Bearing Technology
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides, with ample illustration, technological information on all phases of ball bearings. It starts out with the basics such as description, theory of operation, sizes, and types. The features and capabilities of the three different kinds of ball bearings are described along with an explanation of the compromise that is involved in the design of inner and outer ring pathway curvature and shoulder height. Next, a discussion follows of how ball bearing operating life is calculated and why it is given as a probability number and how preloading spindle bearings can improve the accuracy of manufacturing machines. Finally, bearing seals, material, and lubrication methods are given along with an explanation of how the use of double sealed ball bearings can be an advantage to the machine designer. Every effort has been made to provide step-by-step, easy to read material with factual information and descriptive illustrations to enhance the student's knowledge of ball bearing technology.
Since ball bearings are used in a wide variety of product, this course will provide useful information to a wide variety of engineering disciplines including Mechanical, Electrical, Automotive, Civil, Manufacturing, and any other with a Machine Design option or having an interest in mechanical products. There is always a need for new faces and new ideas in the bearing industry to improve product performance in such demanding fields such as high speed aircraft and space vehicles where light weight and extremely harsh environments continually push the performance of today's products to their limit. Even more earthly environments such as wind turbines are proving to be a design challenge to the bearing engineer because of unexpected and sometimes hard to explain failures that are occurring in ever increasingly sized megawatt units.
090-Introduction to Gear Technology
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Much scientific study and development work has been completed on gears. Formulas have been developed and standards established to make gear design and application as easy an endeavour as possible. The gear tooth has been so successfully perfected that, when two gears mesh, almost perfect rolling takes place. Most gears operate in the high 90% range similar to anti-friction bearings where virtual pure rolling does take place.
This course provides, with ample illustration, established technological information on gears. It has almost as many pages of illustrations as it does text. It starts out with terminology and types of gears. Next the type of material used and the method of manufacture are explained. A sample problem is posed whereby allowable transmitted horsepower formulae for tooth bending and pitting are used to evaluate a simple gearset. The gearset is then revaluated with several design options and the results compared to baseline data. Gear mounting is examined by solving an equation for gear rim design and an equation for shaft size. Finally drawings are presented and expert analysis given for gears in power transmission devices.
This course is written in an effort to make it attractive to Mechanical Engineers or anyone else with a technical discipline that is interested in broadening their background in mechanical power transmission basics. The field is full of opportunities and challenges especially in the aerospace industry where new gear variations have been developed that perform beyond the limits of today's existing designs and the search is on for even better concepts that will deliver even more power with less weight for future generation vehicle use.
105-Automotive Bearing Technology
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course deals with the application of anti-friction bearings in automotive vehicles. It contains pertinent text along with and an ample number of illustrative sketches to provide the student with an easy grasp of the subject matter. It explains the use of bearings in manual and automatic transmissions. It has an in depth discussion of vehicle wheel bearings. Wheel bearings are considered safety items by the auto manufacturers and their design and manufacture is of vital importance to passenger well being. There is a discussion regarding the new "Integral Spindle Wheel Bearing" which was designed and mass-produced by one of the major U.S. car companies. Integral spindle wheel bearings are incorporated in the new front-drive light weight passenger cars and are considered a major engineering and manufacturing break through. Finally, there is information presented on the special design aspects of engine coolant pump bearings and an explanation of the operation of the drive axle differential system. The bulk of the mathematical equations for this course are contained at the end in the form of Appendix pages for reader convenience.
098-LEED for Existing Buildings
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Today's built environment is being scrutinized due to current economic conditions, reduced availability of non-renewal resources, and tenant requests for healthier workspaces. This combination has changed the way we build, operate, and manage our buildings.
LEED® certified buildings are one way in which the places we work are meeting expectations of building owners, mangers, and the people who work in them. LEED for Existing Buildings, Operations and Maintenance (EB:O&M), is one standard within the LEED family of certifications, which specifically addresses the operational activities of the current inventory of commercial buildings in the United States, and sets guidance for increase profitability and sought after real estate.
This paper will introduce the LEED - EB:O&M rating system, demonstrate the benefits of a certified building, offer examples of how to successfully design a project, and provide examples of Federal, State, and Local Incentives related to sustainable buildings.
095-Fundamentals of Concrete
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Written in an easy to understand style, the course Fundamentals of Concrete takes a look at the properties of concrete including its ingredients as well as the nature of the product from its inception at mixing these ingredients to some of the final products. A clear discussion of the ingredients of concrete is included as well as the process that makes the initial slurry change to a hardened structural material. Some of concrete's material properties — such as workability, weight, and strength — are discussed including precautions and factors affecting these properties. The effect of evaporation on newly placed concrete is discussed along with methods to prevent it.
The course continues with a clear discussion of reinforced concrete, stresses in a concrete beam, and reinforcing steel. The principles of pre-cast and post-tensioned beams are discussed with several representative cross sections presented. The course concludes with an introductory discussion of the principles of formwork design.
The course is not a design course but does offer some sample calculations to demonstrate the design criteria involved in the design of reinforced concrete beams and the design of formwork for vertical structures such as walls and columns.
222-Lime Soda Water Softening Calculations
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for civil engineers, chemical engineers and environmental engineers. Topics included are calculation of the different types of hardness in a water sample from lab analysis results; conversion among different units for hardness and chemical concentration; information about three lime soda water softening processes (two-stage excess lime softening, split treatment, and selective calcium removal); calculation of the dosages needed for lime, soda ash and carbon dioxide; calculation of daily chemical requirements; and calculation of solids production rates. A sample spreadsheet is included that illustrates the use of a spreadsheet to make some of the calculations discussed in the course.
The overall objective of this course is to provide the attendees with knowledge about hardness in water and the lime soda water softening process for softening water. A more detailed list of learning objectives is included in the course document.
131-An Introduction to Pavement Construction - Part 1 - Concrete
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to concrete pavement construction covering pavement types, ingredients and mix designs, pavement uses, methods of paving, paving equipment, and recent changes in the industry and their benefits.
After completion the reader should have a basic understanding of the standard methods of concrete paving and the associated equipment needed. Additionally, which construction methods and equipment choices are more suitable for specific pavement types and applications. Lastly, what latest technological, social, and economic factors are changing the traditional perception of concrete pavement and are making concrete pavement a more desirable choice to alternate paving types.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient paving designs to suit a construction method that is advantageous to the project.
149-Precast Segmental Bridge Construction - Part 1 - An Introduction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Precast Segmental Bridge Construction covering Casting Segments, Precast Substructure Erection, Precast Superstructure Erection — Span-by-Span Method, and Precast Superstructure Erection — Balanced Cantilever Method.
After completion the reader should have: a basic understanding of these methods of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
229-Precast Segmental Bridge Construction - Part 2 - Span by Span Erection Method
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Span-by-Span method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, Truss Placement, Erection Geometry, Span Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the span-by-span method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
230-Precast Segmental Bridge Construction - Part 3 - Stressing and Grouting
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Post-tensioning Stressing and Grouting operations. Topics covered in the course include: Brief introduction narrative, Common Terms and Definitions, Stressing operations outline, and Grouting operations outline.
After completion the reader should have: a better understanding of the post-tensioning stressing and grouting operations and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, testing requirements and procedures, and lastly, the understanding of these operations will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
233-Precast Segmental Bridge Construction - Part 4 - Balanced Cantilever Erection Method
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Balanced Cantilever method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, "Table-Top" Fabrication and Erection, Erection Geometry, Balanced Cantilever Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the balanced cantilever method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
264-Precast Segmental Bridge Construction - Part 5 - Precast Segment Manufacturing
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow-on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on manufacturing bridge precast segments. Topics covered in the course include: Casting Equipment, Site Selection, Segment Formwork, Lifting and Transporting Segments, Concrete Placing and Finishing, Casting Geometry, and Stressing and Grouting.
After completion the reader should have a better understanding of the manufacturing and the associated equipment needed to precast bridge segments for erection, and an understanding of the staging and some details for acceptance of precast materials. Lastly, the understanding of the pre-casting method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
341-Accelerated Bridge Program - Intro to Prefabricated Bridge Unit (PBU) Construction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Prefabricated Bridge Unit Construction covering Casting Units, Crane Erection of Units, SPMT Erection of Units, Brige Slide Erection of Units, & Finishing items.
After completion the reader should have: a basic understanding of these methods of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
380-Accelerated Bridge Program - Intro to GRS-IBS Abutment Construction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Geosynthetic Reinforced Soil Integrated Bridge System Construction.
After completion the reader should have: a basic understanding of this method of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
163-Heat Load Calculations for Refrigerated Spaces
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course breaks down the heat gain calculations required for any refrigerated space into four categories; transmission, infiltration, product and miscellaneous. An Excel spreadsheet will be provided that calculates the thermal loads in each of these areas and automatically transfers that design data to a concise one page summary.
The course delves into the materials, properties, logic and equations required for heat load calculations in each of the above four areas. It also offers guidance with respect to industry norms and typical, basic cold storage construction techniques.
Upon completion of this course, a good understanding of the refrigeration requirements of most refrigerated spaces will be attained.
243-Soil Erosion & Sediment Control Plans
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects that disturb the soil, including construction, mining, and other activities. It presents an overview of soil erosion and sediment control plans and describes several specific practices in detail.
The overall objective of this course is to provide a comprehensive description of soil erosion and sediment control plans and to familiarize the reader with the most commonly-employed practices. In addition, it presents detailed information on a number of soil erosion control practices and describes how and when to use them.
218-Managing Project Risk
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is about managing project risk in an organization whether you are an engineer, senior manager or professional project manager. In the project world, managing risk is critical because every decision, every action taken contains some element of risk. Risk cannot be eliminated. Risk can only be controlled and accepted if the decision or action needs to be made. Understanding this concept becomes important when considering that practically everyone in an organization is involved in some kind of project work and makes decisions involving risk.
In the ideal project world, project managers are trained in project risk management. 1In the real project world, many projects are small and assigned to engineers and managers with less than formal risk management training. Managing risks become critical to achieving project cost and schedule targets. This course presents three basic principles for managing project risk, namely, identify, quantify, and control. However, managing project risk still depends on experience and skill of the engineer or manager to identify, quantify and control the risk in order to manage it.
At the end of the course is a set of questions that highlights the take-aways for the reader to remember and use for managing project risk in their organization.
The Project Management Institute (PMI) accepts this courses for category 4 credit
1Project Management Institute, PMBOK — GUIDE Fifth Edition 2013 Project Risk Management, Chapter 11
196-Structural Concepts for Non-Structural Engineers
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Structural Concepts for Non-Structural Engineers is a course designed to promote understanding of why structures work the way that they do, and why they are designed the way that they are.
It is a course for people that do not have a heavy background in structural design, such as Electrical Engineers, Mechanical (HVAC) Engineers, and Architects.
It is, perhaps, a review for people who have studied structures in college, but have not been seriously involved with it since.
298-Temperature Control for Spacecraft
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is recommended for:
- All engineering disciplines - Since this is a fundamentals (breadth) level course, professional engineers in any discipline can benefit from this course.
- All mechanical engineers - To expand discipline knowledge by learning how temperature control is applied to spacecraft.
The main objective of this course seeks to answer the following question:
- How does a spacecraft maintain its temperatures in space?
228-What Every Engineer Should Know About Fire Protection
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a basic familiarity with the essentials of fire protection, and in particular, focused on sprinkler systems. The National Fire Protection Association Chapter 13 is the most followed guide for the installation of sprinklers. This course covers the essential thoughts and theories for the necessity of fire sprinkler protection, and how the building fuel load strongly influences the amount of required protection. It then discusses how best to meet that need using different components that make up a complete and operational fire protection system.
The course design gives a broad overview of fire protection and touches on many subjects without going to great in-depth levels. It is intended for engineers who need to interact with fire protection professionals, or facility maintenance engineers and management who desire a good working background knowledge of fire protection. It will not teach the complicated calculations and methodologies for designing fire protection systems. Forthcoming courses plan to address that topic in more detail.
246-Compressed Air Systems for Forest Products Facilities
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Many manufacturing facilities use large quantities of compressed air. In designing such facilities, the Consulting Engineer will often be required assemble a bid package for the compressed air system. To do this, he must determine the Scope of Work, then size the equipment and write specifications. The purpose of this course is to provide instruction on completing these steps. The course is written for design of materials-handling facilities that do not require large amounts of instrument air, but rather use compressed air for power, cleaning and other unit operations. Specifically, it is written from perspective of the authors' experience in designing forest products manufacturing facilities.
On completing this course, the student should be able to:
- Calculate the basic compressed air requirements of the process.
- Calculate the design compressed air requirement for the plant.
- Determine the equipment supply requirements.
- Name some advantages of rotary screw compressors over reciprocating compressors.
- Describe the functions of an aftercooler.
- Name two types of dryers commonly used in forest products manufacture.
- Describe three types of regeneration systems for desiccant dryers.
- Name three purposes for compressed air receivers.
- Estimate the required size of compressed air receiver.
- Discuss the need for an oil/water separator with the client.
- Calculate the expected oil concentration in the condensate leaving the aftercooler.
323-What every Engineer should know about Power Engineering fundamentals
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Want to know more about Transformers, and not the kind in the movies? Electrical power is utilized for just about everything in the world. Without electricity, we could not function as a technical society. Electrical equipment can be seen everywhere, be it your house, office, stores or along the roads. What happens when you lose power at your house? Do you every wonder how things are powered up? Ever wonder what the big green humming box is near your offices front door? Do you want to know what a panelboard, circuit breaker, conductor or conduit is? This course will provide some fundamentals of electrical power engineering.
At the conclusion of this course, the student will:
- Understand about the major equipment for electrical power equipment.
- Learn more about residential electrical equipment.
- Learn about conduits and conductors and other electrical equipment seen around construction sites and residential houses
- Learn power equipment names seen in the consulting industry
- Learn what major power equipment looks like
- Learn about electrical construction tips
327-An Introduction to Pond and Lake Dredging
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is designed to be an introduction into the planning, assessment, design and execution of dredge projects in inland waterways of Ponds and Lakes (coastal waterbodies that are tidally influenced will need to be approached differently). These bodies of water are an incredible resource in our country, they are sources of our drinking water, they provide flood storage and recreational opportunities, and are an integral part of our landscape.
There are numerous influences that affect the quality of our Ponds and Lakes, from development within the watershed, changes in environment and water levels (floods and droughts), and aging infrastructure (both on the inputs and the outlet/control structures). All of these influences may result in diminished water quality, invasive aquatic species, and sedimentation and infill of the waterbody. Dredging is an effective approach to counteract these negative effects on the waterbodies and that's what we will discuss in this course. It is important to note that dredging may help reduce the negative impacts of the past, but it should also be paired with compatible projects to reduce those impacts from the future, including stormwater management treatment strategies, invasive species monitoring, and other strategies, which will not be covered in this course.
342-A Guide to Port Redevelopment Assessments
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The purpose of this course to provide a guideline on how to conduct an assessment for a port redevelopment project, specifically looking at the infrastructure and environmental constraints present within the properties to be reviewed. This initial assessment phase should be considered non-invasive, i.e. no sampling of soils, groundwater, and physical buildings and structures, but more of a roadmap for where future investigations should be focused should a site be attractive for redevelopment. The assessment should be used as a tool to analyze the environmental impacts and physical infrastructure present at the site with relation to the potential redevelopment of the Site. A complete redevelopment assessment will go beyond engineering review and include economic assessments (market analysis) and planning assessments, as well as legal reviews. This course will focus on the environmental and infrastructures assessments associated with a port site, since this course is aimed at an engineering audience. Sometimes redevelopment assessments are conducted with a specific new use in mind, which helps narrow the scope of the assessments, other times its conducted with a broader view of what could happen with the site in the future. For the purposes of this course, we will spend the most time looking at the broad view redevelopment aspects, but we will also discuss screening site for a specific end use as well.
Oftentimes ports that have potential for redevelopment are blighted and have fallen past their peak usages, therefore, the environmental impacts dominate the redevelopment options. Environmental limitations are common within properties that have current and historical industrial usage and do not represent a barrier to redevelopment, rather they represent factors and limitations that need to be addressed as part of the redevelopment.
Similarly, the physical infrastructure for sites that are being eyed for redevelopment may have fallen into some level of disrepair or less frequent maintenance. Other times the physical infrastructure on site is in good working order, however your client is anticipating or exploring a market change. In any redevelopment scenario, it’s important to look at the physical infrastructure to see how it has played a role on site in the past, currently, and what role it could play in a redeveloped site.
It is very important however during these initial assessments to highlight what the potential issues could be with respect to both infrastructure and environmental considerations so that your client or the end-user can have a better understanding of what cost considerations could impact the redevelopment of the site and warrant further investigation.
385-Sustainability Comparisons for All Engineers
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
It is increasingly common for engineers in all fields to consider sustainability when designing a product, process, or facility. This course will cover recent trends in sustainability including the “triple bottom line”, life cycle assessment, lifecycle cost, renewable energy, the precautionary principle, and greenhouse gas emissions.
In can be challenging to quantify sustainability and to reduce subjectivity. This course will directly address these challenges and present a ten step framework for calculating and comparing the sustainability of alternatives. Two example comparisons are provided to guide you through the process of quantifying sustainability, comparing the alternatives, and picking a winner.
402-External Ballistics Primer for Engineers - Part I: Aerodynamics & Projectile Motion
3 $67.50
Course Objectives: This course was written to introduce engineers of any discipline to the basics of external ballistics. The engineer will gain a general understanding of many of the factors, effects and forces which affect the flight path of a projectile in unpowered flight.
Course Description:
The intriguing subject of this primer explores the characteristics of the unpowered portion of flight of a projectile on a ballistic trajectory, or external ballistics. It was created for the broad range of engineers who have an interest in learning the basics of external ballistics. In order to accurately describe the factors, which affect the trajectory of an object on a ballistic flight path and the path itself, an engineer will rely on rigorous calculations, computer simulations and experimental data. For the purposes of this primer, gun related pun intended, we only resort to a conceptual understanding of the mechanics, augmented by the use of simplified equations including mentions of some of the governing equations with focuses on some specialized cases. The focus areas are kept concise so that tangential topics such as orbital mechanics are generally not treated. The course has been broken into two parts. Part I targets the aerodynamic characteristics of general projectiles in flight and relevant factors which affect its flight path. In Part II we dive into the use of associated measurement hardware an engineer or ballistician might use to characterize flight paths and conclude with a spotlight on the physics of the ballistic pendulum.
405-Structural Nonlinearity - Part 1 - Defining Nonlinearity
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
What is structural nonlinearity? The notion of linearity has become so ingrained in the practice of structural engineering that the term nonlinearity feels shadowy and ominous, vague and unconventional. Nonlinearity means that the structural behavior will be different, but how? What constitutes nonlinearity and what are the different types?
There are multiple components, conditions, and behavior that all fit under the umbrella of structural nonlinearity. The terminology surrounding nonlinearity can be overwhelming – P-delta, inelastic behavior, softening/stiffening, large deflections, physical nonlinearity, follower forces, nonprismatic, directionality, etc.
What are all the different types of nonlinearity that are possible in structural analysis? Why are they different and when do they need to be included? This course aims to introduce the full range of structural nonlinearity, describe their behavior and effects, and provide insight into when nonlinearities should be included in analyses.
Note: The content in this series of courses is advanced and requires a solid understanding of structural behavior and considerable experience with linear structural analyses. The reader should be familiar with beam theory, determinacy and internal stability of structures, strength of materials, and should be experienced in idealizing real-world structures and have exposure to some more advanced concepts such as plastic hinging.
417-Airport Engineering - Part II - Runway & Taxiway Design
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The second of three courses, this training addresses specific engineering elements of runway and taxiway design. This lesson will inform you of the details involved in these critical airport features and familiarize you with federal standards. Upon completion, you will know precise dimensions, grades, and design criteria that will aid in project execution and reinforce your understanding of runways and taxiways. **Bonus material: discover an interesting concept about circular runway design that you never knew existed**
421-Structural Nonlinearity - Part 2 - Analysis Methods
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Only a small sliver of real-world behavior is linear, so mentioning nonlinear analysis without any context is opaque if not ungraspable. The term nonlinear analysis relates as much information as suggesting a “special tool” or a “custom solution”. There are several different analysis methods that can solve structural nonlinearity and they have curious and indistinct names that have been informally adopted by the industry. What types of nonlinearities can MNO or 3rd-order analysis solve? Which of a simulation analysis or an analysis using a geometric stiffness matrix is an approximation? How does a 2nd-order analysis work?
This course surveys the current analysis methods capable of solving structural nonlinearity. This course presents the types of nonlinearity that each method can solve and introduces concepts such as recursion, kinematics, iterative analyses, benchmark problems, and discretization. The discussions are anchored by numerous illustrative diagrams and detailed examples of how iterative analyses converge.
Note: The content in this series of courses is advanced and
requires considerable experience with linear structural analysis and
a solid understanding of structural behavior. It is recommended that
the preceding courses in this series be completed prior to taking
this course.
427-Airport Engineering - Part III - Signs & Markings
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The third course in the series, this training addresses airport signs and markings. This lesson will inform you of the details involved in critical airport communication features and familiarize you with federal standards. Upon completion, you will know the different types of airport signs, sign placement standards, installation requirements, and all about runway and taxiway markings. Safety measures are emphasized and common airport features are discussed.
428-Creating Effective Teamwork In Project Management
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Almost all companies espouse the desire to have efficient project teams, but often the teams are not effective. There are many reasons for these failures, including management culture, ineffective leadership, contracts that diminish teamwork, and even not recognizing who the project team really is.
Several real-life examples are described to illustrate the positive and negative teaming situations. Some of the major mistakes are created by asking the wrong questions, failing to listen carefully to others, and cutting off communications when discussions are most needed. These examples are based upon experiences building and maintaining large petrochem, power and pulp & paper facilities. But the principles apply equally well to software development, facility operations, construction companies, in-house development projects, or any project that requires people to work together to develop an end product.
This course provides the most important individual principles for teaming effectively, which most people want to do, and then describes the management requirements to create an environment conducive to teaming. The remainder of the course assumes the company, project management and the project personnel want an effective team, then describes the concrete actions individuals, and management must do to allow the teaming to occur.
This course is intended for individuals to recognize their responsibilities to work as a team, and managers to see how they can be Effective Team Creators, and not Team Destroyers.
434-Biological Odor Control Systems
3 $67.50
Course Objectives: Gain a practical understanding of biological odor control systems.
Course Description:
Engineers are increasingly being tasked with the design of odor control systems to limit the release of foul air and to reduce air pollution. This course focuses on biological treatment alternatives for odor control. The three types of biological odor control systems are biofilters, biotrickling filters, and bioscrubbers. This course covers important design details each of these systems.
The following topics are covered:
- Odor control options
- Biological treatment explained
- Biofilter beds
- Biotrickling filters
- Bioscrubbers
- Side-by-side comparison
437-Activated Carbon Odor Control Systems
3 $67.50
Course Objectives: Gain a practical understanding of activated carbon odor control systems
Course Description:
Activated carbon has been used for odor control purposes for nearly a century. Engineers from various disciplines can benefit from a better understanding of activated carbon odor control systems. This course covers important design details and includes example problems to prepare engineers for real world applications.
The following topics are covered:
- Odor control options
- Dry adsorption explained
- Types of activated carbon
- Common system configurations
- Sizing calculations
- Lifecycle cost
447-Basic Ship Types & Their Uses (Part 1)
3 $67.50
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
- Bulk Cargo Ships
- Roll On-Roll Off Cargo Ships
- Liquid and Gas Cargo Carriers
- Container Ships
- Break-Bulk Freighters
- Heavy Lift Ships
Passenger Ships
- Roll On-Roll Off Ferries
- Cruise Ships
- Sailing Ships
- Submarines
- Yachts
- Fishing Vessels
450-Basic Ship Types & Their Uses (Part 3)
3 $67.50
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
Auxiliary Ships:
Tankers, Cargo, and Ammunition Ships
Floating Drydocks
Ocean Surveillance Ships
Naval and Army Tugs
Salvage Ships
Submarine Tenders
Submarine Rescue craft
Research Submarines
Coast Guard Vessels:
Buoy Tenders
Icebreakers
National Security Cutters
High Endurance Cutters
Icebreaking Tugs
Medium Endurance Cutters
Sentinel Class Fast Response Cutters
Island Class Cutters
Marine Protector Class Cutter
USCGC Eagle
Small Harbor Tugs
Motor Lifeboats
Aids To Navigation Boats
451-Basic Ship Types & Their Uses (Part 4)
3 $67.50
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
Offshore Oil and Gas Platform Support Vessels
Platform Construction Vessels
Anchor Handling and Towing/Supply Vessels
FPSO Ships
Windfarm Construction Vessels
Windfarm Support Vessels
Heavy Lift Ships
Crewboats
Accommodation Vessels
Seagoing Tugs
River and Harbor Tugboats
Articulated Tug-Barges (ATBs)
Pushboats
Dredges
Barges
Fireboats
Scientific Research Ships
Hovercraft
Submarines
473-Oil and Grease Removal
3 $67.50
Course Objectives: Gain an understanding of engineered systems for removing oil and grease from wastewater.
Course Description:
Oil and grease (O&G) is one of the most common pollutants found in nearly all waste streams. O&G often causes blockages in pipes and interferes with wastewater equipment. Engineers from various disciplines can benefit from a better understanding of O&G removal techniques. This course explains the different types of O&G and explains the alternatives for removing each type of O&G. Example problems help prepare engineers for real world applications.
The following topics are covered:
- Regulatory Requirements
- Forms of Oil and Grease
- Oil and Grease Removal Processes
- Sizing a Grease Interceptor
491-A Guide to Environmental Impact Statements for Engineers
3 $67.50
New Course
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in projects that require environmental impact statements (EIS). Sometimes it is the engineer’s responsibility to write the EIS or to collaborate with others in writing it. On other projects, the EIS will be written by other professionals. However, in any case, it is important for the engineer to have an understanding of what is required and where the data constituting the statement is found.
The overall objective of this course is to provide an overview of the various components that go into writing environmental impact statements. When you complete this course you should be familiar with many sources of information that can be used in generating an EIS.