346-Tiny Houses Part 1 -Planning and Design Considerations, Legality, and the Engineer's Role
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the differences between tiny houses on wheels, recreational vehicles, and manufactured homes.
2. Recognize the professional services opportunities in the tiny house industry available to engineers.
3. Comprehend the challenges in determining where and how tiny houses on foundations and tiny houses on wheels may be legally placed.
4. Identify the different building/manufacturing standards available for a tiny house on wheels and the pros and cons of each standard.
5. Understand the importance of the addition of Appendix Q to the 2018 International Residential Code.
6. Know the reasoning behind maximum width and maximum height thresholds for mass produced tiny houses on wheels and how and when to exceed these thresholds.
Course Description:
This course serves as an introduction to designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course series focuses on tiny houses mounted on trailers which are often referred to as tiny houses on wheels (THOW). This introduction covers general planning and design considerations regarding trailers, appliances, utility connections, floor plans, and lofts. It also goes over the legal issues concerning construction standards and physical placement of both THOW and tiny houses on foundations. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
347-Tiny Houses Part 2 - Structural Design
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the pros and cons of using wood and metal structural framing members.
2. Size floor joists and roof joists using tables from the International Residential Code.
3. Calculate the size of wood loft joists and window headers using allowable stress design methodologies.
4. Recognize when advanced framing techniques are useful or not useful in given situations.
5. Recall additional structural measures often used for highly mobile tiny houses on wheels.
Course Description:
This course is part two of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This second course focuses on structural design. Also presented are specific techniques to structurally handle the mobile nature of THOW. Both prescriptive and engineered methodologies are used. Five extensive examples with calculations and 35 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
368-Tiny Houses Part 3 - Building Enclosure Design
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the importance of climate zones as they relate to tiny house insulation and vapor retarder requirements.
2. Comprehend the differences between vented and unvented roof assemblies.
3. Recognize the code approved, and most commonly used, materials for THOW roofs and exterior siding.
4. Identify the most common interior finish materials used in THOW and why some materials used commonly for THOW are different than those used for tiny houses on foundations.
Course Description:
This course is part three of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This third course focuses on building enclosure design: insulation, air sealing, roof assemblies, ventilation, exterior siding, doors, windows, and interior finishes. Over 60 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
242-What Every Engineer Should Know About Reinforcement Corrosion in Concrete Highway Bridges
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a summary of a topic that is much in the news — the incidence and causes of the deteriorating condition of an important segment of the physical infrastructure in the United States - concrete highway bridges. In these structures the primary cause of damage is corrosion of the embedded steel reinforcement. The course condenses selected information from (20) cited engineering standards, articles and government reports to supply an overview of the topic.
Included are the ways corrosion damage occurs, control methods by which corrosion can be minimized for new construction and during remediation along with several techniques used to assess the extent of existing corrosion damage. The types of construction discussed are traditional rebar in concrete and prestressed bridge members — both pre and post-tensioned. The causes of problems with coated structural steel in bridges that are fully exposed to the atmosphere are briefly reviewed. Much of the information is applicable beyond bridges to other reinforced concrete structures that may experience corrosion of embedded reinforcement.
The learning objectives are to allow professional engineers to gain a basic understanding of how corrosion in reinforced structures occurs and how it may be assessed and controlled.
The course is most suitable for civil, structural and transportation engineers plus persons in other engineering disciples that plan and supervise construction and remediation of concrete structures in which corrosion may be an issue.
110-Corrosion Control and Tactics
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an overview of the nature of aqueous corrosion and the variety of standard methods and well-known, but often overlooked tactics, used to control it at least cost. Topics reviewed include some fundamental aspects of electrochemistry related to control methods, brief descriptions of the various forms of attack, effects on corrosion rates of various operating variables, the four classic control methods and some suggested control tactics that the engineer can investigate further for applicability to his or her specific corrosion problem. Several references are cited.
256-Building Rebar Inspection
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Building Rebar Inspection takes the reader through a journey across the reinforced concrete construction of a new school center. It starts with the inspection of typical foundation pile caps and grade beams. Walls, slabs and other component features are described and illustrated. Sample Forms are provided for Inspectors to use as models to get started. Even the beginning designer or related professional will gain insight into how their design or contracting function fits into the concrete work happening in the field.
352-Fundamentals of Masonry Part A
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The science of masonry construction is extensive, thorough, and is the foundation of the profession. But there is an artistic component bounded only by the imagination of the designer and the skilled mason.
Masonry construction has been practiced for thousands of years beginning with the ancient Greeks and the Romans. The "language" of the craft has been developed over this time. Today we use words that clearly identify pieces and parts of the industry that can bewilder or confound those unfamiliar with them — words such as wythe, shiner, and grapevine.
Masonry construction has exploded during the last century and a half due in large part to advances in manufacturing technology. For example, in the early years of manufacturing, each concrete block was made by hand — about 10 blocks per hour per man. Today, with modern machinery, production can be as high as 2,000 blocks per hour. And, each year around 4-billion concrete
blocks are manufactured — enough to build about 3.5 billion square feet of wall. Up until about 150 years ago, clay bricks were made individually and by hand. Today, with modern machinery and kilns, about 50-billion clay bricks are manufactured each year — enough to build about 7.5 billion square feet of wall.
This two course series was created to provide fundamental knowledge about masonry construction for the engineer, contractor, architect, and anyone else who is interested in having a basic understanding of the topic.
341-Accelerated Bridge Program - Intro to Prefabricated Bridge Unit (PBU) Construction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Prefabricated Bridge Unit Construction covering Casting Units, Crane Erection of Units, SPMT Erection of Units, Brige Slide Erection of Units, & Finishing items.
After completion the reader should have: a basic understanding of these methods of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
380-Accelerated Bridge Program - Intro to GRS-IBS Abutment Construction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Geosynthetic Reinforced Soil Integrated Bridge System Construction.
After completion the reader should have: a basic understanding of this method of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
149-Precast Segmental Bridge Construction - Part 1 - An Introduction
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Precast Segmental Bridge Construction covering Casting Segments, Precast Substructure Erection, Precast Superstructure Erection — Span-by-Span Method, and Precast Superstructure Erection — Balanced Cantilever Method.
After completion the reader should have: a basic understanding of these methods of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
229-Precast Segmental Bridge Construction - Part 2 - Span by Span Erection Method
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Span-by-Span method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, Truss Placement, Erection Geometry, Span Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the span-by-span method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
230-Precast Segmental Bridge Construction - Part 3 - Stressing and Grouting
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Post-tensioning Stressing and Grouting operations. Topics covered in the course include: Brief introduction narrative, Common Terms and Definitions, Stressing operations outline, and Grouting operations outline.
After completion the reader should have: a better understanding of the post-tensioning stressing and grouting operations and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, testing requirements and procedures, and lastly, the understanding of these operations will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
233-Precast Segmental Bridge Construction - Part 4 - Balanced Cantilever Erection Method
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Balanced Cantilever method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, "Table-Top" Fabrication and Erection, Erection Geometry, Balanced Cantilever Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the balanced cantilever method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
264-Precast Segmental Bridge Construction - Part 5 - Precast Segment Manufacturing
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow-on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on manufacturing bridge precast segments. Topics covered in the course include: Casting Equipment, Site Selection, Segment Formwork, Lifting and Transporting Segments, Concrete Placing and Finishing, Casting Geometry, and Stressing and Grouting.
After completion the reader should have a better understanding of the manufacturing and the associated equipment needed to precast bridge segments for erection, and an understanding of the staging and some details for acceptance of precast materials. Lastly, the understanding of the pre-casting method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
404-Tiny Houses Part 4 - Mechanical, Electrical, and Plumbing Systems
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the basic components that make up each MEP system.
2. Size various MEP system components in accordance with building code requirements.
3. Identify key differences between designing and installing MEP systems in THOW and traditionally built dwellings.
4. Comprehend the importance and impact of selecting various energy sources for mechanical equipment and appliances.
Course Description:
This course is part of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This fourth course focuses on mechanical, electrical, and plumbing (MEP) systems. Over 50 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
413-Advanced Florida Building Code - Seventh Edition (2020) Florida Building Code-Accessibility
2 $38.00
New Course
Course Objectives: Upon successful completion of this course participants will be able to: Identify important ADA documents including the Federal ADA Standards and the Florida Building Code 7th Edition (2020) Accessibility as well as discuss the DOJ code certification process and FL statute Chapter 553 adoption and exception language Describe Chapter 1 changes to section 106 definitions and explain Chapter 2 code changes regarding applications, existing buildings and facilities, and accessible routes Summarize Chapter 2 code changes to parking spaces, assembly areas, transient lodging and guest rooms and residential facilities Express code changes of accessible routes in Chapter 4, general site and building elements in Chapter 5, plumbing elements and facilities in Chapter 6 and special rooms, spaces and elements in Chapter 8
Course Description:
Credit Hours: 2.00
Approval Number: 1036.0
This course satisfies the requirements of Florida Statute 471.0195 and board rule 61G15-22.001 F.A.C.
Florida Building Commission Advanced Course Accreditation Number 1036.0
This two-hour online distance learning course is designed to give the design and construction professional insight into the Florida Building Code-Building Code 7th Edition-Building (2020). It covers the fundamental changes, additions and modifications to the code. This course offers no opinions concerning any motivations behind these code changes. We leave it up to others to debate the potential impacts, merits or drawbacks, if any, of these new code provisions. Instead, changes are explained as objectively as possible within the scope of this course to clarify the extent and detail of the code modifications, the new provisions, or the deletions as these are now incorporated in the 6th Edition of the FBCB.
419-Fundamentals of Masonry Part B
4 $90.00
New Course
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The science of masonry construction is extensive, thorough, and is the foundation of the profession. But there is an artistic component bounded only by the imagination of the designer and the skilled mason.
Masonry construction has been practiced for thousands of years beginning with the ancient Greeks and the Romans. The “language” of the craft developed over this time. Today we use words that clearly identify pieces and parts of the industry that can bewilder or confound those unfamiliar with them – words such as collar joint, sash block, and Jack arch.
This three course series provides fundamental knowledge about masonry construction for the engineer, architect, contractor, and anyone else who is interested in having a basic understanding of the topic.
Fundamentals of Masonry – Part A explained and simplified the terminology and the fundamental principles of masonry and masonry construction including the nomenclature and history of the subject, and an introduction to the basic principles of wall construction.
Fundamentals of Masonry – Part B continues the discussion of masonry including design and reinforced masonry, some structural elements such as bond beams, lintels, pilasters, and arches and concludes with a section titled “What can go wrong?” with an example of the severe consequences of ignoring the design and construction principles of masonry.
It is fully illustrated with drawings and color photographs and is written in an easy to understand style.
Coming soon Fundamentals of Masonry – Part C will discuss additional masonry units including stone and glass, the anatomy of a clay brick street, efflorescence, and additional fascinating (actually, disheartening) damages resulting from sloppy and incorrect masonry construction practices.