388-Introduction to Desalination Project Design and Delivery
4 List: $90.00
Sale: $9.95
This is our Featured Course of the week.
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Implementing a successful desalination project encompasses a number of steps including planning, conceptual and detailed designs, construction, commissioning and acceptance testing. This course presents and introduction to the design and delivery of desalination projects and provides insights into project funding alternatives.
The course encompasses discussion of the key factors considered in the selection of desalination plant treatment processes (pretreatment, membrane salt separation, post-treatment) and equipment. The course introduces the principles used for pilot testing to verify and optimize desalination plant treatment process, and to select plant configuration and layout. Overview of the energy and chemical use of desalination plants are presented and the dosages of most common chemicals are provided in the course. The course also focuses on the fundamentals of project scheduling, implementation and phasing and addresses project economics and most common methods of project delivery such as design-bid-build, design-build-operate and build-own-operate transfer.
053-Introduction to Reverse Osmosis Desalination
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an introduction to the key principles and performance parameters associated with reverse osmosis membranes and their use for brackish and seawater desalination. The course outlines the principle of reverse osmosis and explains factors that define membrane performance, including key source saline water characteristics types and structure of reverse osmosis membranes and their use in modern desalination systems.
386-Introduction to Planning of Desalination Projects
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Planning of desalination projects is of critical importance for successful project implementation and for producing desalinated water at competitive cost and minimal impact to the surrounding terrestrial and aquatic environment. The purpose of project planning is to define the size, location and scope of the desalination project and chart a roadmap for project implementation.
This education course provides an overview of key steps associated with the planning of desalination project, from selecting service area and target product water quality for the project, to determining viable plant location, intake and discharge configuration, and identifying the most cost effective treatment processes. The course focuses on the practical guidance and real-life experience in the development of desalination projects in the US and abroad.
389-Overview of Alternative Desalination Technologies
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Fresh water can be produced from various saline water sources (ground water, brackish surface water or seawater) using a number of alternative desalination technologies such as thermal evaporation, reverse osmosis membrane separation and electrodialysis.
This course introduces the reader to the desalination technologies used most widely at present worldwide and defines key advantages, disadvantages, and areas of application of each of these technologies. The provided information encompasses both thermal evaporation technologies such as multistage flash distillation (MSF), multi-effect distillation (MED) and vacuum compression (VC) as well as reverse osmosis desalination using spiral wound membranes (RO) and electrodialysis reversal (EDR) systems. The course contains graphs and tables comparing the capital and operation and maintenance expenditures and water production costs of these alternative desalination technologies and highlights the differences in their energy use and fresh product water quality.
113-Management of Desalination Plant Concentrate
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an overview of the alternatives for management of concentrate generated by brackish water and seawater desalination plants. The main focus of the course is on widely used alternatives for disposal of concentrate, including outfall discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; and evaporation. The reader will learn the basics of concentrate management and will gain knowledge on key criteria and factors for selection, implementation and design of the most commonly used concentrate disposal alternatives.
118-Re-mineralization of Desalinated Water
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Desalinated water has very low mineral content. Re-mineralization aims to supplement this water with chemicals which: (1) provide protection of the distribution system against corrosion and (2) add minerals needed to meet human dietary needs and to facilitate other potential uses of the desalinated water such as irrigation. This education course provides an overview of key alternative re-mineralization technologies, including: (1) direct addition of chemicals containing calcium and magnesium; (2) processes where re-mineralization is accomplished by blending of desalinated water and saline source water; and (3) treatment technologies where calcium or calcium and magnesium are added by dissolving naturally occurring minerals such as limestone and dolomite. The course focuses on the practical aspects of the implementation of these re-mineralization technologies and provides key design criteria and guidelines for their implementation and operation.
278-Introduction to Wastewater Clarifier Design
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course introduces the reader to the key issues and considerations associated with successful and cost-effective design of primary and secondary clarifiers for wastewater treatment plants. The course presents an overview of the main advantages and disadvantages of rectangular and circular clarifiers and provides key design criteria for primary and secondary clarifiers.
In the course the reader will find guidance of how to select the most appropriate configuration, surface overflow rate, hydraulic detention time, and depth of primary and secondary clarifiers and how to tailor clarifier design to the typical challenges facing almost all wastewater treatment plants such as: excessive transient flows during wet weather conditions; septicity of the plant influent and primary sludge, occasional upsets of the activated sludge system resulting in poorly settling sludge; and episodes of rapid increase of sludge blanket depth, and deterioration of clarifier effluent quality.
The course discusses how the configuration and type of the selected plant influent pump station, screening and grit removal equipment impact clarifier performance as well as how clarifier operation influences other key wastewater treatment plant facilities such as the activated sludge aeration basins, sludge thickeners, and aerobic and anaerobic digesters. The reader will learn about the typical approaches used for optimization of the clarifier — activated sludge system design and will find case studies implementing such approaches at full-scale wastewater treatment plants.
279-Fundamentals of Clarifier Performance Monitoring and Control
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Clarifiers are integral part of most wastewater treatment plants. The main learning objective of this course is for the reader to gain understanding of the common practices, technologies and equipment used for monitoring and control of the performance of primary and secondary clarifiers.
The course presents an overview of the key perfomance parameters used for clarifier design and operation, and of the working principles of popular clarifier montioring equiment such as turbidimeters, ultrasonic solids analyzers, nuclear solids density meters, and sludge balanket level detectors.
This course provides guidance regarding the typical areas of application, key advantages and technology limitations for each type of clarifier monitoring equipment. Knowledge gained from the course would build your skills and understaning of how to select the most appropriate methods and equipment for succesful monitoring and control of clarifiers for the site specific conditions of a given wastewater treatment plant. Most of the fundamental knowledge presnted in this course can also be applied for monitoring and control of clairifiers in drinking water plants.
281-Environmental Review & Permitting of Desalination Projects - Part 1
5 List: $112.50
Sale: $35.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
With this course the reader will gain through understanding of the key environmental issues and challenges as well as reliable solutions associated the implementation of desalination projects.
The Part 1 of the course provides an overview of the potential environmental impacts associated with the construction and operation of desalination plants and to presents alternatives for their minimization and mitigation. The course focuses on three key environmental impact aspects: (1) intake impingement and entrainment; (2) concentrate impact on aquatic environment; and (3) carbon footprint of desalination plant operations.
282-Environmental Review & Permitting of Desalination Projects - Part 2
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
With this course the reader will gain through understanding of the key environmental issues and challenges as well as reliable solutions associated the implementation of desalination projects.
In Part 2 of the course, the reader will learn about the scope and content of supporting environmental studies, which government regulatory agencies require to be completed by the desalination project proponent in order to obtain necessary permits for collecting intake water, for discharge of desalination plant concentrate and for introducing desalinated water into the municipal drinking water supply system.
429-Sexual Harassment Prevention in the Workplace
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The intent of this course is to define Sexual Harassment, Prevention, and laws concerning employees in the workplace. This course is intended for owners, supervisors, and employees that need to meet their Continuing Education requirements for Sexual Harassment Prevention Training. The course explains harassment, sexual harassment, and prevention based on current U.S. laws. It will discuss what sexual harassment is, what it is not, and how it should be addressed.
370-Ethics in the Practice of Engineering
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The intent of this course is not to make you ethical, but rather, remind you of your ethical obligations. This course is intended for professionals that need to meet their Continuing Education requirements for Ethics. The course reviews ethical conduct as it relates to the requirement for professionals to protect the health, safety, and welfare of the public. It will look at some of the areas in which ethics impacts our professional careers.
Detailed course outline with timeline
- 7 Minutes — Course Description & Introduction
- 6 Minutes — Ethics for Professionals
- 5 Minutes — Conflicts of Interest
- 5 Minutes — Preferential Treatment
- 6 Minutes — Ethics in Our Relationships
- 5 Minutes — Prohibited Gifts
- 5 Minutes — Regulations
- 6 Minutes — Summary
- 12 Minutes - The Test
This course satisfies one hour of the ethics training requirement for license renewal for the following state engineering boards: |
Delaware | 3-6 hours required |
District of Columbia | 1-hour required |
Florida | 1-hour required |
Indiana | 1-hour required |
Iowa | 2-hours required |
Louisiana | 2-hours required |
Maryland | 1-hour required |
Minnesota | 2-hour required |
Mississippi | 1-hour required |
New Jersey | 2-hours required |
New Mexico | 2-hours required |
New York | 1-hour required |
Ohio | 2-hours required (rules or ethics) |
Texas | 1-hour required |
Wisconsin | 2-hours required |
070-Solar Power Part I - Design for Small Structures - An Introduction
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Those who take this course will learn about the basic solar power system components. They will learn how the components work together to provide power to supply a small structure. They will learn how to size and select the necessary components based on the power demands. They will understand how the power is generated, what is required to store the power for later use, and the power losses that occur within a system.
195-Solar Power Part II - Design for Grid-Tie Systems - An Introduction
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Detailed course outline with timeline
- 6 Minutes - Introduction, brief history, and current applications
- 26 Minutes - Basic Grid-Tie Concepts
- 16 Minutes - System components
- 15 Minutes - Power Company Disconnects
- 10 Minutes - DC Power Disconnects
- 7 Minutes - Battery Banks
- 16 Minutes - DC Power Circuits
- 11 Minutes - Emergency Power
- 16 Minutes - System Sizing
- 37 Minutes - Solar Panels
- 8 Minutes - Batteries
- 5 Minutes - Charge Controllers
- 11 Minutes - Inverters
- 5 Minutes - Meters
- 7 Minutes - Generators
- 5 Minutes - Summary
- 40 Minutes - The Test
This is a course that begins where the first course "Solar Power Design for Small Structures" ends. You will be introduced to the components needed to connect a solar PV system to the power grid and how they work together to provide power for a building. You will also be provided a quick refresher of the design process.
202-Solar Power Part III - Design Considerations
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Detailed course outline with timeline
- 15 Minutes — Introduction
- 20 Minutes — Components Review
- 10 Minutes — PV Panels
- 35 Minutes — Mounts
- 5 Minutes — PV sizing
- 10 Minutes — Batteries
- 10 Minutes — Charge Controllers
- 15 Minutes — Inverters
- 5 Minutes — Meters, Monitors, Generators
- 30 Minutes — System Wiring
- 10 Minutes — Surge Protectors
- 15 Minutes — Schematics
- 20 Minutes — Emerging Technologies
- 5 Minutes — Summary
- 40 Minutes — The Test
Those who take this course should already have a basic understanding of a PV system. This course will briefly review and highlight the components and process of designing a solar power system for small structures but does not provide all of the explanations and basic information found in the introductory course (Solar Power Part I to Design for Small Structures - An Introduction). This course provides more details and calculations used when expanding beyond a very basic system and by providing additional information on items not included previously such as surge protectors, battery capacities and their selection, DC appliances, sample solar system schematics, and emerging technologies. This course is intended to build on the Solar Power Part I and Solar Power Part II introductory courses.
089-Solar Power Part IV - Inspecting and Evaluating Systems
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to provide engineers, designers, or contractors with the knowledge and process for inspecting or evaluating a solar power system in a small structure. We will also look the problems commonly associated with solar photovoltaic (PV) systems, brief reviews of the system components and their potential problems, and wiring issues. We will also note those items that you need to perform the inspection.
The course will start "at the beginning" … from the solar panels to the electrical outlets and the components installed along the way. This course is not intended to be all-inclusive in the evaluation and trouble-shooting of a solar PV electrical system but is intended to provide you with knowledge of how to evaluate a system and the typical problems associated with a solar powered system. Obviously, these same principles apply to a system for a larger structure but there is much more involved with larger power systems. Note, that this is not the design course. The design course is entitled "Solar Design for Small Structures" and is also available from SunCam.
155-Solar Power Part V - Installing Systems - An Introduction
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is basically a detailed type of course for contractors and professionals that work closely with contractors or monitor the installations… a guide of what's behind all those component covers, how they are connected, grounded, protected, what goes where, etc. It includes installation tips that many contractors simply aren't familiar with or don't worry about in their haste to complete the job and get paid.
Note: The course assumes that you have a working knowledge of Solar Photovoltaic (PV) design and are familiar with the terminology and components found in a typical system. This course is intended to provide an introduction to the installation of a solar PV system for a small structure. The design and basic explanations of a solar power system are not included in this course but are found in the first two courses:
070-Solar Power Design for Small Structures - An Introduction and 089-Solar Power Systems - Inspecting and Evaluating
Obviously, the course doesn't cover the installation of all the products manufactured today but does cover a complete off-grid solar system installation that can be used as a reference for the different products available today.
Detailed course outline with timeline
- 11 Minutes — Introduction
- 5 Minutes — Safety
- 11 Minutes — Needed Items
- 21 Minutes — Course Project
- 21 Minutes — Panel Mounts
- 37 Minutes — Solar Panels
- 11 Minutes — PV Combiner
- 11 Minutes — Electrical Disconnect Box
- 11 Minutes — Charge Controller
- 12 Minutes — Batteries
- 11 Minutes — Inverter
- 21 Minutes — Breaker Boxes
- 11 Minutes — Grounding
- 5 Minutes — Summary
- 40 Minutes — The Test
189-A Guide to Low Impact Development
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use development projects requiring stormwater control. It explains the concepts included in low impact design and discusses many of the techniques involved.
The overall objective of this course is to provide a comprehensive overview to low impact design. It includes descriptions of many of the techniques along with design examples showing how these techniques can be used to control stormwater runoff and to enhance downstream water quality.
243-Soil Erosion & Sediment Control Plans
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects that disturb the soil, including construction, mining, and other activities. It presents an overview of soil erosion and sediment control plans and describes several specific practices in detail.
The overall objective of this course is to provide a comprehensive description of soil erosion and sediment control plans and to familiarize the reader with the most commonly-employed practices. In addition, it presents detailed information on a number of soil erosion control practices and describes how and when to use them.
172-Design of Constructed Stormwater Wetlands
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects requiring stormwater control. It describes the design, installation, and maintenance of constructed stormwater wetlands.
The overall objective of this course is to provide a comprehensive design guide to constructed stormwater wetlands. A design of vegetated filter strips is also included as well as a discussion of water budget calculations. The course describes a variety of types of constructed wetlands and includes a discussion of adaptations that need to be made to them in unusual situations.
271-Spillway Design for Small Dams
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who need to analyze, design, or retrofit a spillway for a small dam.
The overall objective of this course is to provide a detailed analysis of the various types of spillways and to explain the hydraulics of each type. There is a also a discussion of the spillway exit channels and a description of sub-critical, critical, and super-critical flows in these channels. After completing this course the engineer should be able to design a spillway using a variety of outlet structures.
321-What Every Engineer Should Know About Endangered Species
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended as an overview of the Endangered Species Act and how it relates to land development projects. This knowledge is helpful in the early planning stages of a development and can prevent costly delays as the project progresses.
The overall objective of this course is to provide a basic understanding of what endangered species are and how their presence can affect land development. The course includes information as to where an engineer can gain preliminary data on this topic for a specific project.
491-A Guide to Environmental Impact Statements for Engineers
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in projects that require environmental impact statements (EIS). Sometimes it is the engineer’s responsibility to write the EIS or to collaborate with others in writing it. On other projects, the EIS will be written by other professionals. However, in any case, it is important for the engineer to have an understanding of what is required and where the data constituting the statement is found.
The overall objective of this course is to provide an overview of the various components that go into writing environmental impact statements. When you complete this course you should be familiar with many sources of information that can be used in generating an EIS.
493-Engineering Ethics: Conflicts of Interest
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to satisfy the professional engineer’s requirements for continuing education in ethics. It looks closely at two hypothetical situations and determines whether the engineers involved are engaging in behaviors that are unethical because they constitute conflicts of interest. The yardstick by which this is gaged is the National Society of Professional Engineer’s Code of Ethics.
190-Web-Based Programming For Engineers - Part 1
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The objective of this course series is to present web-based computer programming to engineers. Engineers generally learn a conventional computer programming language such as FORTRAN, Pascal, C++, etc. Since the advent of the internet and the World Wide Web, web browsers such as Internet Explorer, Mozilla Firefox, Google Chrome, etc. have built-in capabilities to interpret and implement programmed instructions written in a class of programming languages called scripting languages. Web-based programming involves writing codes, called scripts, in a scripting language. The scripts are embedded in the structure of web pages. Unlike conventional general purpose programming languages, web-based programming does not require any special software to be installed. The scripts are interpreted and implemented directly by the web browser. Web-based programming is an increasingly relevant and advantageous tool for engineers competing in the global marketplace in the age of the internet and the World Wide Web. Once uploaded to the World Wide Web, web-based applications are immediately exposed to a global audience.
This course is the first of a series on web-based programming. This course prepares participants for learning scripting languages and web-based programming. This course uses screenshots and an easily readable click-by-click narrative that engages participants as they proceed through the topics. An introduction to computers and computer networks, the internet and the World Wide Web, is presented. The fundamentals of the Hyper Text Markup Language (HTML), for building web pages, are presented in detail. Several examples are presented to illustrate the creation and editing of web pages using HTML alone. At the end of this course, participants will be capable of building a web page from scratch, and editing and updating existing web pages. Upon completion of this course, participants will be prepared to begin learning how to program web-based applications. On completion of this course participants will be able to identify professional situations in which applying web-based programming will be of great benefit to them in their fields of specialty, and to their organizations.
191-Web-Based Programming For Engineers - Part 2
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The objective of this course series is to present web-based computer programming to engineers. Engineers generally learn a conventional computer programming language such as FORTRAN, Pascal, C++, etc. Since the advent of the internet and the World Wide Web, web browsers such as Internet Explorer, Mozilla Firefox, Google Chrome, etc. have built-in capabilities to interpret and implement programmed instructions written in a class of programming languages called scripting languages. Web-based programming involves writing codes, called scripts, in a scripting language. The scripts are embedded in the structure of web pages. Unlike conventional general purpose programming languages, web-based programming does not require any special software to be installed. The scripts are interpreted and implemented directly by the web browser. Web-based programming is an increasingly relevant and advantageous tool for engineers competing in the global marketplace in the age of the internet and the World Wide Web. Once uploaded to the World Wide Web, web-based applications are immediately exposed to a global audience.
This course is the second of a series on web-based programming. This class presents Hypertext Markup Language (HTML) forms and the JavaScript scripting language. This course uses screenshots and an easily readable click-by-click narrative that engages participants as they proceed through the topics. This course starts with an overview of the HTML language used to create web pages, followed by HTML forms and controls. The fundamentals of the JavaScript language are then presented in detail. Several examples and illustrations from many fields of specialty are presented to illustrate the creation and editing of interactive web pages using HTML codes and JavaScript scripts. At the end of this course, participants will be capable of building a web page from scratch, editing and updating existing web pages using HTML and JavaScript alone. Participants will be able to create fully functional interactive web pages and web applications that can be used to input and output data, as well as run complex algorithms. On completion of this course participants will be able to identify professional situations in which applying web-based programming will be of great benefit to them in their fields of specialty, and to their organizations.
192-Web-Based Programming For Engineers - Part 3
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The objective of this course series is to present web-based computer programming to engineers. Engineers generally learn a conventional computer programming language such as FORTRAN, Pascal, C++, etc. Since the advent of the internet and the World Wide Web, web browsers such as Internet Explorer, Mozilla Firefox, Google Chrome, etc. have built-in capabilities to interpret and implement programmed instructions written in a class of programming languages called scripting languages. Web-based programming involves writing codes, called scripts, in a scripting language. The scripts are embedded in the structure of web pages. Unlike conventional general purpose programming languages, web-based programming does not require any special software to be installed. The scripts are interpreted and implemented directly by the web browser. Web-based programming is an increasingly relevant and advantageous tool for engineers competing in the global marketplace in the age of the internet and the World Wide Web. Once uploaded to the World Wide Web, web-based applications are immediately exposed to a global audience.
This course is the final part of a series on web-based programming. This course presents topics on the JavaScript scripting language. This course uses screenshots and an easily readable click-by-click narrative that engages participants as they proceed through the topics. This course starts with an overview of the branching and looping structures in JavaScript, followed by an in-depth presentation of JavaScript objects. Techniques to manipulate the web browser as well as handling of errors are also presented. Examples from various fields are presented to illustrate the application of the fundamental concepts in real world situations. On completion of this course, participants will be able to create fully functional interactive web pages and web applications that can be used to input and output data, as well as run complex algorithms. On completion of this course participants will be able to identify professional situations in which applying web-based programming will be of great benefit to them in their fields of specialty and to their organizations.
There are no required pre-requisites for this course. However, it will be helpful to understand the basics of creating web pages as well as the fundamentals of scripting languages as presented in the earlier parts of this course series.
467-Ohio Engineering Ethics
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course presents the Ohio Code of Ethics for Professional Engineers and Surveyors, the rules governing the sealing and signing of engineering documents by Ohio registered professional engineers, and actions of the State Board of Professional Engineers and Surveyors. This course is tailored to the registered professional engineer in the 2022 –2023 biennium seeking credit for the ethics/ laws and rules requirement. Upon successful completion of this course, the participant will earn one hour of the required twohours in professional ethics or rules relevant to the practice of engineering.
468-Ohio Engineering Laws and Rules 2022 - 2023 Biennium
2 List: $45.00
Sale: $17.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course presents Ohio laws and rules regarding professional engineers, the practice of engineering, engineering firms, renewal of registration, the state board of professional engineers and surveyors, and disciplinary actions of the state board. This course is tailored to the registered professional engineer in the 2022 – 2023 biennium seeking credit for the ethics/ laws and rules requirement. Upon successful completion of this course, the participant will earn two hours of the required two hours in professional ethics or rules relevant to the practice of engineering.
346-Tiny Houses Part 1 - Planning and Design Considerations, Legality, and the Engineer's Role
4 List: $90.00
Sale: $29.95
Course Objectives: After completing this course participants should be able to:
1. Understand the differences between tiny houses on wheels, recreational vehicles, and manufactured homes.
2. Recognize the professional services opportunities in the tiny house industry available to engineers.
3. Comprehend the challenges in determining where and how tiny houses on foundations and tiny houses on wheels may be legally placed.
4. Identify the different building/manufacturing standards available for a tiny house on wheels and the pros and cons of each standard.
5. Understand the importance of the addition of Appendix Q to the 2018 International Residential Code.
6. Know the reasoning behind maximum width and maximum height thresholds for mass produced tiny houses on wheels and how and when to exceed these thresholds.
Course Description:
This course serves as an introduction to designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course series focuses on tiny houses mounted on trailers which are often referred to as tiny houses on wheels (THOW). This introduction covers general planning and design considerations regarding trailers, appliances, utility connections, floor plans, and lofts. It also goes over the legal issues concerning construction standards and physical placement of both THOW and tiny houses on foundations. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
347-Tiny Houses Part 2 - Structural Design
4 List: $90.00
Sale: $29.95
Course Objectives: After completing this course participants should be able to:
1. Understand the pros and cons of using wood and metal structural framing members.
2. Size floor joists and roof joists using tables from the International Residential Code.
3. Calculate the size of wood loft joists and window headers using allowable stress design methodologies.
4. Recognize when advanced framing techniques are useful or not useful in given situations.
5. Recall additional structural measures often used for highly mobile tiny houses on wheels.
Course Description:
This course is part two of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This second course focuses on structural design. Also presented are specific techniques to structurally handle the mobile nature of THOW. Both prescriptive and engineered methodologies are used. Five extensive examples with calculations and 35 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
368-Tiny Houses Part 3 - Building Enclosure Design
4 List: $90.00
Sale: $29.95
Course Objectives: After completing this course participants should be able to:
1. Understand the importance of climate zones as they relate to tiny house insulation and vapor retarder requirements.
2. Comprehend the differences between vented and unvented roof assemblies.
3. Recognize the code approved, and most commonly used, materials for THOW roofs and exterior siding.
4. Identify the most common interior finish materials used in THOW and why some materials used commonly for THOW are different than those used for tiny houses on foundations.
Course Description:
This course is part three of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This third course focuses on building enclosure design: insulation, air sealing, roof assemblies, ventilation, exterior siding, doors, windows, and interior finishes. Over 60 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
404-Tiny Houses Part 4 - Mechanical, Electrical, and Plumbing Systems
4 List: $90.00
Sale: $29.95
Course Objectives: After completing this course participants should be able to:
1. Understand the basic components that make up each MEP system.
2. Size various MEP system components in accordance with building code requirements.
3. Identify key differences between designing and installing MEP systems in THOW and traditionally built dwellings.
4. Comprehend the importance and impact of selecting various energy sources for mechanical equipment and appliances.
Course Description:
This course is part of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This fourth course focuses on mechanical, electrical, and plumbing (MEP) systems. Over 50 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
479-Tiny Houses Part 5 - Highly Mobile and Off-Grid Case Studies
5 List: $112.50
Sale: $35.95
Course Objectives: After completing this course participants should be able to:
1. Understand what potential solutions exist for a tiny house’s water source(s), wastewater treatment or disposal system(s), and energy source(s).
2. Identify what solutions are feasible for a variety of situations or given scenarios.
3. Size an off-grid solar photovoltaic system array and battery bank.
4. Apply “toolbox” information and calculation methods to case studies and/or real life.
Course Description:
This course is part of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). This fifth course presents case studies related to highly mobile tiny houses on wheels (THOW) and off-grid tiny houses, whether THOW or tiny houses on foundations (THOF). Prior to the case studies, a “toolbox” of flowcharts, methods, and products is given to help show possible solutions for tiny house water, wastewater, and energy needs. Six examples and five case studies are included. Much of the basis of this course came from my own research, planning, designing, and construction of a THOW I built myself and the subsequent search for a property to place it on. This course is intended as a stand-alone course, meaning you can take it without having taken previous courses in the series. Certain topics and background are covered in greater detail previously in the series, so when appropriate, I make reference to other courses.
162-Introduction to Compound Channel Flow Analysis for Floodplains
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Cross-sections of natural and restored waterways are generally composite compound channels as opposed to single geometric shapes with one constant roughness. This course covers eight composite compound channel analysis methods. Differences between the methods and typical applications of each method are discussed. The course also provides example calculations for each method. A few common hydraulic software programs are briefly introduced and the concepts and analysis methods they utilize are discussed.
408-The Hardy Cross Method and its Successors in Water Distribution Modeling
4 List: $90.00
Sale: $29.95
Course Objectives: This course teaches the following specific knowledge and skills:
1. Hydraulic concepts necessary for understanding various pipe network analysis methods
2. The history behind the development of the Hardy Cross method
3. The basic principles the Hardy Cross method is based on and the step-by-step procedures used for pipe network analysis
4. The differences between the Hardy Cross and Modified/Improved Hardy Cross methods
5. Some of the advantages and disadvantages of using the Hardy Cross method
6. The differences between loop methods, node methods, flow methods, and gradient/node-loop methods for analyzing pipe networks
7. The basic concept of the Newton-Raphson method
8. The basic concept and application of the Linear Theory method
9. The basic concept and application of the Gradient method
10. A timeline of water distribution modeling advances from 1960 to 2020
11. The head loss methods and hydraulic balancing methods used by common hydraulic modeling software programs
12. Introduces leading modeling software developers, programs, and their basic capabilities
Course Description:
Water distribution system models have become very important and practical tools for civil engineers. Models are often used to optimize the design of new distribution systems or analyze major extensions or modifications to existing distribution systems. Computer models help engineers answer many common questions. For example, what is the maximum fire flow at a given point in the system? How long can that fire flow be provided for? What size pipe installation would be necessary between two points in a system to increase the pressure at one of the points to the minimum pressure required? If a subdivision or commercial development is built, will adequate pressures and flows exist? If not, what length and size of water mains must be upgraded by the developer to allow for the proposed construction?
In the 1930s the Hardy Cross method provided a breakthrough in pipe network analysis. Later, the advent of the modern computer allowed for analysis of even larger distribution systems using the method. Despite the development of more efficient computer algorithms, the Hardy Cross method remains the pipe network analysis method taught to most undergraduate civil engineering majors.
This course covers the history, basic principles, assumptions, step-by-step procedures, advantages, and disadvantages for solving pipe network problems using the Hardy Cross method. The three predominate analysis methods used by water distribution modeling software over the past 40 years are introduced and explained (the Newton-Raphson, Linear Theory, and Gradient methods). At the end of the course material a summary of some popular public-domain and commercial hydraulic models is presented. A total of ten example problems and solutions are included throughout the course to reinforce learning. The primary audiences for this course are consulting and municipal engineers in the water resource and environmental fields.
056-Forensic Engineering Part A - Conducting Failure Analyses of Metallic Materials
2 List: $45.00
Sale: $17.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is a three-part course sequence that describes the methods commonly used to evaluate the cause(s) of metallurgical and mechanical failures, i.e., completing root-cause failure analyses (RCFA), and recommending actions to prevent recurrences. The process is often known as forensic engineering. The procedures may be applied in legal cases in which the professional engineer doing the RCFA acts as an expert witness. However, here the primary emphasis is on finding the physical cause of metallic material failures and related engineering tasks.
The three courses may be taken separately or as a group. In general, the information in the cases histories in Part C. is built on knowledge given in Parts A. and B. plus facts provided in Course 110, Corrosion Control and Tactics. Alternatively, some P.E.s may have previous knowledge and work experience with RCFA's of metallic materials and choose less than all three courses.
Part A. describes typical steps and procedures used in a thorough RCFA, some common classes of generic issues that can cause metallic failures, and some of the typical analytical and test techniques that are used to characterize the properties of metals that have failed. Brief comparisons are described between the usual responsibilities of the failure analyst in a legal case versus his or her actions in conducting a RCFA that does not involve legal action.
Part B. describes four common classes of specific failure mechanisms that often occur in metallic part or mechanical component failures, i.e., static stress overload, mechanical fatigue, corrosion and wear. Most of these classes of failures have multiple subclasses and each is reviewed in some detail with emphasis on how these characteristics point to effective corrective actions that may be useful. The many forms of aqueous corrosion are given special attention because of the widespread occurrence and effects of this class of failures.
Part C. provides descriptions of (6) case histories of metallurgical and mechanical failures that were completed. The objective is to provide practical examples of how the RCFA procedures and knowledge of different failure mechanisms presented in Parts A. and B. plus general engineering experience might be used. Several illustrations (sketches and photomicrographs) of the details of the cases are included. Also, a short list is provided of other RCFA examples a failure analyst working with metallurgical or mechanical failures might encounter.
057-Forensic Engineering Part B - Four Classes of Metallurgical and Mechanical Failures
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is a three-part course sequence that describes the methods commonly used to evaluate the cause(s) of metallurgical and mechanical failures, i.e., completing root-cause failure analyses (RCFA), and recommending actions to prevent recurrences. The process is often known as forensic engineering. The procedures may be applied in legal cases in which the professional engineer doing the RCFA acts as an expert witness. However, here the primary emphasis is on finding the physical cause of metallic material failures and related engineering tasks.
The three courses may be taken separately or as a group. In general, the information in the cases histories in Part C. is built on knowledge given in Parts A. and B. plus facts provided in Course 110, Corrosion Control and Tactics. Alternatively, some P.E.'s may have previous knowledge and work experience with RCFA's of metallic materials and choose less than all three courses.
Part A. describes typical steps and procedures used in a thorough RCFA, some common classes of generic issues that can cause metallic failures, and some of the typical analytical and test techniques that are used to characterize the properties of metals that have failed. Brief comparisons are described between the usual responsibilities of the failure analyst in a legal case versus his or her actions in conducting a RCFA that does not involve legal action.
Part B. describes four common classes of specific failure mechanisms that often occur in metallic part or mechanical component failures, i.e., static stress overload, mechanical fatigue, corrosion and wear. Most of these classes of failures have multiple subclasses and each is reviewed in some detail with emphasis on how these characteristics point to effective corrective actions that may be useful. The many forms of aqueous corrosion are given special attention because of the widespread occurrence and effects of this class of failures.
Part C. provides descriptions of (6) case histories of metallurgical and mechanical failures that were completed. The objective is to provide practical examples of how the RCFA procedures and knowledge of different failure mechanisms presented in Parts A. and B. plus general engineering experience might be used. Several illustrations (sketches and photomicrographs) of the details of the cases are included. Also, a short list is provided of other RCFA examples a failure analyst working with metallurgical or mechanical failures might encounter.
284-Forensic Engineering Part C - Case Histories: Metallurgical & Mechanical Failure Analyses
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is a three-part course sequence that describes the methods commonly used to evaluate the cause(s) of metallurgical and mechanical failures, i.e., completing root-cause failure analyses (RCFA), and recommending actions to prevent recurrences. The process is often known as forensic engineering. The procedures may be applied in legal cases in which the professional engineer doing the RCFA acts as an expert witness. However, here the primary emphasis is on finding the physical cause of metallic material failures and related engineering tasks.
The three courses may be taken separately or as a group. In general, the information in the cases histories in Part C. is built on knowledge given in Parts A. and B. plus facts provided in Course 110, Corrosion Control and Tactics. Alternatively, some P.E.'s may have previous knowledge and work experience with RCFA's of metallic materials and choose less than all three courses.
Part A. describes typical steps and procedures used in a thorough RCFA, some common classes of generic issues that can cause metallic failures, and some of the typical analytical and test techniques that are used to characterize the properties of metals that have failed. Brief comparisons are described between the usual responsibilities of the failure analyst in a legal case versus his or her actions in conducting a RCFA that does not involve legal action.
Part B. describes four common classes of specific failure mechanisms that often occur in metallic part or mechanical component failures, i.e., static stress overload, mechanical fatigue, corrosion and wear. Most of these classes of failures have multiple subclasses and each is reviewed in some detail with emphasis on how these characteristics point to effective corrective actions that may be useful. The many forms of aqueous corrosion are given special attention because of the widespread occurrence and effects of this class of failures.
Part C. provides descriptions of (6) case histories of metallurgical and mechanical failures that were completed. The objective is to provide practical examples of how the RCFA procedures and knowledge of different failure mechanisms presented in Parts A. and B. plus general engineering experience might be used. Several illustrations (sketches and photomicrographs) of the details of the cases are included. Also, a short list is provided of other RCFA examples a failure analyst working with metallurgical or mechanical failures might encounter.
466-Forensic Engineering Part D - Case Histories: Corrosion Failure Analyses
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is the fourth part of a series of courses on forensic engineering in the area of metallurgical and mechanical root-cause failure analyses. The course, like Part C, provides different case histories of failure analyses of metallic materials and mechanical engineering as segments of the large field of forensic engineering. The emphasis in each case presented is on failures due to corrosion of metals. Five somewhat unique case histories are provided.
To get the most benefit from the course, it is assumed that the reader has a general interest in and knowledge of corrosion from previous education or work experience. That knowledge might include some basic principles as provided in the author’s prior Course 110, Corrosion Control and Tactics, or other information sources on corrosion and related technology. However, brief statements of most principles needed in a given case history are provided.
The course seeks to show that analyses of metallic aqueous corrosion failures can be a very diverse and often challenging area of engineering. This is because of the many interacting factors. Included are the many possible practical situations where failures may occur, the variety of metals potentially affected, the different methods sometimes needed to access the evidence, the several corrosion mechanisms that may be found and the role of an engineering expert witness in associated legal actions.
110-Corrosion Control and Tactics
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an overview of the nature of aqueous corrosion and the variety of standard methods and well-known, but often overlooked tactics, used to control it at least cost. Topics reviewed include some fundamental aspects of electrochemistry related to control methods, brief descriptions of the various forms of attack, effects on corrosion rates of various operating variables, the four classic control methods and some suggested control tactics that the engineer can investigate further for applicability to his or her specific corrosion problem. Several references are cited.
242-What Every Engineer Should Know About Reinforcement Corrosion in Concrete Highway Bridges
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a summary of a topic that is much in the news — the incidence and causes of the deteriorating condition of an important segment of the physical infrastructure in the United States - concrete highway bridges. In these structures the primary cause of damage is corrosion of the embedded steel reinforcement. The course condenses selected information from (20) cited engineering standards, articles and government reports to supply an overview of the topic.
Included are the ways corrosion damage occurs, control methods by which corrosion can be minimized for new construction and during remediation along with several techniques used to assess the extent of existing corrosion damage. The types of construction discussed are traditional rebar in concrete and prestressed bridge members — both pre and post-tensioned. The causes of problems with coated structural steel in bridges that are fully exposed to the atmosphere are briefly reviewed. Much of the information is applicable beyond bridges to other reinforced concrete structures that may experience corrosion of embedded reinforcement.
The learning objectives are to allow professional engineers to gain a basic understanding of how corrosion in reinforced structures occurs and how it may be assessed and controlled.
The course is most suitable for civil, structural and transportation engineers plus persons in other engineering disciples that plan and supervise construction and remediation of concrete structures in which corrosion may be an issue.
354-Mechanical Fatigue of Metals
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Metal fatigue is the most common form of failure among the many applications of dynamic mechanical equipment. This course provides characteristics of fatigue and guidelines for use of the traditional (S-N) method for designing against failure. Mechanical design factors are the primary emphasis but relevant metallurgical factors are also discussed. For overall context, brief descriptions of the three methods generally used for fatigue design and analysis of metal failures are given. These are cyclic stress values versus number of cycles to failure (S-N), cyclic strain values versus number of cycles to failure and linear elastic fracture mechanics (LEFM).
The major portion of the information is devoted to the use of the traditional S-N design method for ferrous, i.e., iron-based, alloys in the high-cycle (H-C) form of fatigue. Many ferrous alloys develop a fatigue limit at higher number of stress cycles. Designing relative to clearly defined fatigue limits is the key to design for those types of alloys. A major emphasis here is that fatigue data developed in most laboratory tests cannot be used directly in design. This is because conditions most often used in lab fatigue testing typically differ from conditions found in actual service applications.
Methods to adjust laboratory fatigue data for practical use in design and analysis is a primary learning objective of the course. Another objective is to show some of the many topics in fatigue and the potential complexity of the subject. Reference sources used here and for investigating fatigue topics not included in this course are listed.
The course is intended primarily for mechanical engineers that do design, alloy selection and failure analysis of equipment that may be subject to fatigue.
390-Ethics in Design and Oversight: The Case of the Florida International University Bridge Collapse
1 List: $22.50
Sale: $11.95
Course Objectives: The course objective is to improve the licensee’s knowledge and understanding of the ethical issues surrounding the collapse of the Florida International University pedestrian overpass of SW 8th Street in Miami on March 15, 2018.
Course Description:
This course is a description of the Florida International University pedestrian bridge collapse on March 15, 2018. The bridge collapsed while under construction over a busy motorway resulting in the deaths of six people and serious injuries to another six. Analysis by the National Transportation Safety Board found errors in the design of the bridge, the review of the design, and the response to signs that the bridge was failing. The case serves as a reminder for designers that reviews can be imperfect and a reminder for reviewers that designs can be imperfect. It also highlights the possible dangers of professional distance between the design and construction processes. The course is designed to give course takers evidence from which they can determine how widely distributed accountability for the collapse should be.
This course satisfies one hour of the ethics training requirement for license renewal for the following state engineering boards: |
Delaware | 3-6 hours required |
District of Columbia | 1-hour required |
Florida | 1-hour required |
Indiana | 1-hour required |
Iowa | 2-hours required |
Louisiana | 2-hours required |
Maryland | 1-hour required |
Minnesota | 2-hour required |
Mississippi | 1-hour required |
New Jersey | 2-hours required |
New Mexico | 2-hours required |
New York | 1-hour required |
Ohio | 2-hours required (rules or ethics) |
Texas | 1-hour required |
Wisconsin | 2-hours required |
183-Quality Project Management
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is about improving the quality for managing project work in an organization whether you are an engineer, senior manager or professional project manager. In the ideal project world, project managers are well-trained professionals and assigned to a project at the beginning of the project. In the real project world, many projects are small and assigned to engineers and managers with less than professional project management training at any time in the life of the project.
For the engineer, senior manager or professional project manager the quality for managing project work should improve significantly by combining seven key tools with a basic feature from statistical process control, the control chart. The seven key tools, called The Seven Icons©, are presented in this course and will demonstrate how they can be used to improve planning and controlling project work.
The Seven Icons© are organized and connected in a structure that is easy to remember. The icon terms serve as a common language between managers, team members, and their bosses. This feature becomes most important when considering that practically everyone in an organization is involved in some kind of project work. Having an effective way of remembering and applying key tools to project work will improve communications throughout the organization and ultimately improve the quality for managing project work.
At the end of the course is a set of questions that highlights the take-aways for the reader to remember and use for improving the quality for managing projects in their organization.
The Project Management Institute (PMI) accepts this courses for category 4 credit
218-Managing Project Risk
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is about managing project risk in an organization whether you are an engineer, senior manager or professional project manager. In the project world, managing risk is critical because every decision, every action taken contains some element of risk. Risk cannot be eliminated. Risk can only be controlled and accepted if the decision or action needs to be made. Understanding this concept becomes important when considering that practically everyone in an organization is involved in some kind of project work and makes decisions involving risk.
In the ideal project world, project managers are trained in project risk management. 1In the real project world, many projects are small and assigned to engineers and managers with less than formal risk management training. Managing risks become critical to achieving project cost and schedule targets. This course presents three basic principles for managing project risk, namely, identify, quantify, and control. However, managing project risk still depends on experience and skill of the engineer or manager to identify, quantify and control the risk in order to manage it.
At the end of the course is a set of questions that highlights the take-aways for the reader to remember and use for managing project risk in their organization.
The Project Management Institute (PMI) accepts this courses for category 4 credit
1Project Management Institute, PMBOK — GUIDE Fifth Edition 2013 Project Risk Management, Chapter 11
356-Industrial and Systems Engineering - The Fundamentals
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course presents principles and practices of Industrial and Systems Engineering (IISE) . The focus of IISE is Operations, namely; Operations Analysis and Design, Operations Control, and Continuous Improvement. IISE practices use science, mathematics, and engineering methods to analyze, design, and improve complex systems and operations. And, because these systems are so large and complex, IISE principles involve knowledge and skills in a wide variety of disciplines; require a broad systems perspective and the ability to work well with people.
A course about Industrial Engineering would not be complete without a brief description of why and how the profession began. The origins of Industrial Engineering began in the early 1900 as part of the scientific management movement. The definition of Industrial Engineering is:
Industrial Engineering is concerned with the design, improvement, and installation of integrated systems of people, material, information, equipment, and energy. It draws upon specialized knowledge and skills in the mathematical, physical and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.
Accordingly, Industrial Engineering emerged as the foundation for connecting engineering methods and economics to set quality and cost standards for delivering goods and services in business and industry. Industrial Engineers apply their knowledge and skills to set operations process standards through the use of planning, design, statistical analysis, methods engineering, interpersonal communications, quality control, computer simulation, and problem solving. At the end of the course is a set of questions that highlights the take-aways for the reader to remember and use for solving operations and systems problems in their organization.
503-Managing a Nuclear Plant Project
4 List: $90.00
Sale: $29.95
New Course
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The United States of America had 55 operating nuclear plants in 2022 that provided 20% of the nation’s electric power. According to the World Nuclear Association to meet the goal of low carbon emissions, nuclear plants must be built and maintained more efficiently. Nuclear power plants undergo seasonal scheduled refueling outages that result in greater efficiency and reliability. When a unit shuts down for refueling, the outage could last up to two months. Reactor operators typically defer much of the non-critical maintenance work until a refueling outage. They conduct the maintenance in parallel with the refueling.
This is a case study about managing a nuclear plant project during a scheduled refueling outage. The project involves the replacement of two large valves which are part of the Drywell Shutdown Cooling System, a critical system in nuclear plant safety for boiling water reactor plants. The valves are in a radioactive area of the plant. The task of replacing two large valves, weighing almost two tons each, in a contaminated environment involves many complex activities and many people. It involves planning, scheduling, budgeting, coordination, communications, conflict resolution, problem solving, decision making, corrective action. An added challenge to performing work in a nuclear plant is managing and controlling the work in a contaminated environment. The term typically used to describe the process which embraces all these things is called Project Management. At one time or another most of the project management practices were present in this project, some effective some less effective.
This is an actual valve replacement project. Some of the project conditions have been changed for training purposes. A cast of characters has been created to illustrate the project conditions. Any similarity between people working in any nuclear plant and the characters in the case study is purely coincidental. The course is presented in five parts. PART 1 contains the economic analysis decision to replace the valves. PART 2 presents the key team members involved and describes a meeting that occurred during the plant refueling outage to solve unexpected problems. PART 3 contains two technical reports. PART 4 contains a Lessons Learned Overview, Outage Lessons Learned contributions to the Nuclear Industry data base and the project close-out report. PART 5 Appendix contains an overview of the US Nuclear Electricity Generation Industry, describes the US Nuclear Reactors, the nuclear workers who maintain the nuclear plants, and a Glossary of Terms and illustrations.
059-Digital Control of Second and Higher Order Systems
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course covers the methodology for developing a digital controller using a modern digital controls approach. Model development for both analog and digital representations are shown and performance compared. The time-shift "q" operator is introduced in accordance with the Zero-Order Hold (ZOH) behavior produced by the sampling and analog-to-digital converter used in the loop. The time-shift operator is used to produce an error predictor and model-prediction errors used to produce control equations.
A digital controller is written and used to control both digital and analog systems and the results are compared. The controller is modified to use different sampling periods and the results are compared to show the performance of the digital control over the same analog system and its dependence on sample rates. The methodology is shown to provide a fast digital controller for a high order system without a complex compensator.
060-Converting Feedback Systems from Analog to Digital Control
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course covers a methodology for developing a digital controller by converting an existing compensated analog controller to a digital model. An analog system is developed, along with a Pole-Zero compensator for use as a typical example. The purpose and effects of the compensator are discussed. The effects of discrete-time sampling of the signals is discussed, along with delay and excess phase effects in accordance with the Zero-Order Hold (ZOH) behavior introduced by the analog-to-digital converter used in the loop.
A system block diagram approach is introduced with integrators in both analog and digital forms. The original analog controller, as well as the compensator model, is produced using a bilinear-transform version of a digital integrator. The performance effects of the sampling are discussed, along with the need for a high enough sampling rate to avoid aliasing and excess phase effects on stability. Implementation alternatives for the digital controller are discussed as well as practical considerations of the effects of digital word-widths on the computation requirements.
075-QAM Digital Communications
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course introduces both analog and digital communications concepts and some of the reasons for the migration from analog to digital technologies. Pertinent analog signal and system concepts are reviewed for comparison and contrast to corresponding digital concepts. Digital representation of analog signals is introduced in both the time and frequency domains so that analog transmission of digital signals could be compared.
Versions of "Suppressed Carrier" modulation progressing from the original Weaver modulator architecture are developed for "Single-Sideband, Suppressed Carrier" analog voice applications through variations to other applications. We add phase modulation and amplitude modulation to the Weaver architecture showing the development of quadrature techniques for using both upper and lower Weaver sidebands to produce independent "I" and "Q" communications channels. Only one bit of information is discussed for each of the phase modulation and amplitude modulation in a simple QAM example, but the groundwork is laid for extending the system. The concept of symbol rate and bit rates is introduced. The importance of frequency and phase synchronization of the receiving Weaver modulator is introduced and examples of issues discussed. The practicing engineer should be able to understand the important issues of QAM digital communication and choose system components in a meaningful way on completion of the course.
079-DSSS Digital Communication
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course introduces both analog and digital communications concepts and some of the reasons for the migration from analog to digital technologies. Pertinent signal and system concepts are reviewed for comparison and contrast.
The course develops the theory and practical issues and examples leading up to Direct Sequence Spread Spectrum (DSSS) Communication. The information theoretic foundation for trading bandwidth and improved Signal-to-Noise Ratio (SNR) is introduced mathematically, but other useful properties associated with particular spreading sequence properties are introduced by example. The gradual development based on the Weaver architecture for frequency translation of single-sideband, suppressed carrier signals through digital QPSK examples into pseudo-noise (PN) sequence spreading of QPSK of sub-carrier sidebands and finally to direct-sequence, spread-spectrum QPSK is employed to build awareness of the relationships between the spectral energy and the modulation processes. The PN sequence generation, its auto-correlation and cross-correlation attributes are introduced and employed in example with a justification for the development of the matched-filter/correlator approach to sequence de-spreading. Some issues of carrier synchronization and problems are introduced but not developed in detail. Finally, the statistical properties of the correlator approach are shown to be the basis for Code-Division, Multiple Access (CDMA) spectrum sharing to ameliorate the extra bandwidth occupied by the spreading.
The practicing engineer should be able to understand the important issues of DSSS digital communication and choose system components in a meaningful way on completion of the course.
008-Foundations of Project Management - Streaming Video Course
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Even the smallest projects are multifaceted these days and the large projects are more complex than ever. Managing these projects requires a professional who is specially trained and equipped with the tools to meet the expectations of regulators, owners and the public. This course, lead by a world-renowned authority on project management, was created to give construction and design professionals the tools and understanding needed to be a successful Project Manager. Foundations of Project Management is the first in a series of project management courses offered by SunCam and Dr. Jeffrey Pinto of Penn State University.
The Project Management Institute (PMI) accepts this courses for category 4 credit
Course Topics and timeline:
- 0:05:30 Introduction
- 0:28:15 Why Project Management
- 0:38:15 Project Scope Management
- 0:32:00 Risk Management
- 0:42:00 Basics of Planning and Scheduling
- 0:22:00 Project Tracking and Control
- 0:29:00 Project Close-out
- 0:10:00 Time allowance for test
- 3:27:00 Total Contact Time
- 3:20:00 Contact time required for 4-PDH
The objective of this course is to equip project personnel with the skills to:
- Control and assure the quality of the work product
- Anticipate the perils that will threaten the project
- Coordinate the work of the various disciplines involved in producing the project
- Apply the resources that are needed at the various stages of the project
- Control project costs and schedule in order to meet the owner's requirements
011-The Technical Side of Project Management - Streaming Video Course
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Participants in this course will gain a working knowledge of the concepts, tools and techniques of project management through educational demonstrations, examples and illustrations.
Ten questions for Project Managers:
- Are your projects ever late?
- Are your projects ever over budget?
- Which task should you start next?
- Do you have enough people to complete your project on time?
- Do you have too many people to keep your project on budget?
- Do you know what tasks you must complete next week or next month to stay on schedule?
- Do you have a list of uncompleted tasks for your project?
- Do you know who will complete each of those tasks?
- Do you have a strategy in place to deal with the loss of key individuals or other resources?
- Do you lose sleep, worrying about any of these things?
This course will help you learn or relearn the skills of Project Management and end those sleepless nights.
This training program is a distance-learning course, created to give design, construction and manufacturing professionals the tools and understanding needed to be a successful Project Manager. The course is offered on Free Streaming Video. You earn continuing education credit by viewing the video and passing a 30-question online test.
The Technical side of Project Management is the second in a series of project management courses offered by SunCam and Dr. Jeffrey Pinto of Penn State University.
The Project Management Institute (PMI) accepts this courses for category 4 credit
Course Topics and timeline:
- 0:04:00 Introduction
- 0:14:00 Work Breakdown Structure
- 0:37:00 Network Diagramming
- 0:12:00 Activity Duration Estimation
- 0:58:00 Developing the Critical Path
- 0:20:00 Crashing Projects
- 0:55:00 Monitoring Project Performance
- 0:10:00 Time allowance for test
- 3:32:00 Total Contact Time
- 3:20:00 Contact time required for 4-PDH
The objective of this course is to equip project personnel with the skills to:
- Understand and write a work breakdown structure
- Prepare and manage a network diagram for the project
- Estimate the duration of all of the activities in the network diagram
- Use the network diagram to establish the critical path for the project
- Differentiate between the effective and ineffective methods for crashing projects
- Monitor project costs and schedule
030-How Your Projects Will Go Wrong - Streaming Video Course
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Most projects fail to meet their cost and schedule objectives and only a small fraction achieve full success. This course offers practical advice and suggestions on how to recognize the warning signs that your project may be on the wrong path and what you can do to alleviate the problems. Just as the old saying, "An ounce of prevention is worth a pound of cure" remains valid, the key to fixing project problems is through early recognition and effective solutions.
How Your Projects Will Go Wrong is the third in a series of project management courses offered by SunCam and Dr. Jeffrey Pinto of Penn State University.
The Project Management Institute (PMI) accepts this courses for category 4 credit
Course Topics and Timeline:
- 0:10:00 Introduction
- 0:10:00 Causes of Project Failure
- 0:18:00 Poor leadership
- 0:31:00 Setting ourselves up to fail
- 1:00:00 Poor knowledge of Project Status
- 0:21:00 Ineffective solutions
- 0:33:00 10 Ways to ruin your project
- 0:08:00 Unwillingness to learn
- 0:05:00 Conclusions
- 0:10:00 Time allowance for test
- 3:26:00 Total Contact Time
- 3:20:00 Contact time required for 4-PDH
Learning Objectives:
The learning objectives of this continuing education course are to give attendees a better understanding of major reason why projects fail, including:
- Poor leadership
- Setting ourselves up to fail
- Poor knowledge of project status
- Ineffective "solutions"
- The unwillingness to learn the correct lessons
033-Welding Technology
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Welding and brazing is always performed in accordance with a procedure. In the simplest of cases, the procedure may exist only in the mind of the welder such as an experienced farmer repairing his equipment. However, in the majority of cases, especially for structures, pressure vessels, piping, etc., a written procedure is required before work. In most cases, the written procedure must be "qualified", i.e. be tested on mockup coupons to prove its effectiveness before being applied to a real product. In all cases, qualified or not, the variables affecting the procedure must be considered and addressed in the procedure.
This course uses the organization concepts of ASME Section IX, Welding and Brazing Qualifications, to introduce some processes and variables that should be considered when planning a welding or brazing procedure. A description is provided of some of the many welding and brazing processes. Variables discussed, including some examples of each, are joint type/weld type, base material, filler material, position, preheat and interpass temperature, post weld heat treatment, shielding gas, electrical characteristics, and technique.
This course provides an excellent introduction to engineers and craftsmen who deal with welding and brazing procedures as a peripheral duty, perhaps reviewing and accepting contractor procedures, and want to more fluently "speak the language". This course is also an excellent introduction for those who will need to be more deeply involved in preparing welding and brazing procedures as a starting point for further study.
375-ASME Welding Qualifications: Part I-Welding Procedures
1 List: $22.50
Sale: $11.95
Course Objectives: Upon completion of this course, the student should have a general understanding of how to qualify a welding procedure based on ASME Section IX. The student should also be able to perform reviews of welding procedure qualifications of their company and their company's vendors. This course is not a substitute for careful consideration of the many Code, Regulatory, and customer requirements for welding procedure qualification.
Course Description:
Much welding requires the welding procedure to be qualified to ASME Section IX. This course illustrates that process by taking us through qualification and documentation of a simple procedure. We begin with planning (distinguishing between essential and nonessential variables) and continuing through welding the test coupon, the required testing, and documentation of the PQR and WPS.
198-Nondestructive Examination
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course introduces the student to the basic concepts of six Nondestructive Examination (NDE) methods used in construction and periodic inspection of metallic products, e.g. building frames, bridges, piping systems, boilers, etc. The physical principle of each method is described. Advantages and disadvantages of each method are discussed and some examples of application are provided. Many applications involve NDE of welds and the student is referred to the SunCam companion course Welding Technology for further study.
Upon completion of this course, the student should be able to:
- Understand the physical principles of six fundamental NDE methods
- Understand the advantages and disadvantages of each method
- Appreciate some of the considerations for applying each method
297-What Every Engineer Should Know About Statistical Process/Quality Control I
5 List: $112.50
Sale: $35.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The American National Standards Institute (ANSI) defines Quality Assurance (QA) as "All of those planned or systematic actions necessary to provide adequate confidence that an item will perform satisfactorily in service". A more operational definition of quality is the one that defines as: "Fitness for Use" This points to the inescapable fact that it is the customer rather the producer or manufacturer that determines what quality is or should be.
There is a tendency to think of quality as a recent development or phenomenon. However, the basic idea of making a quality product with high degree of uniformity has been around for as long as man has made a product the idea that statistics may be instrumental in assuring the quality of manufactured products goes as far back as the advent of modern production. The widespread use of statistical methods in problems of quality control is even more recent. Many problems encountered in the manufacturing or of product and services and the associated supply chains exhibit process characteristics and as such are amenable to statistical treatment or analysis. Statistical Process/Quality control refer to three special techniques:
- Process/Qualitycontrol,
- Acceptance control,
- Parameter design and the establishment of tolerances.
The course places emphases on the significance of process control rather than inspection as a means of reducing rework and nonconformance. Many experts agree that inspection (especially human inspection) does not add value to quality and thus is a necessary but non-value adding activity.
This first in a two-course sequence will focus on Process/Quality control with emphasis on:
- Historical review of Statistical Process/Quality Control
- Cost of Quality (Cost of Poor Quality)
- Quality Auditing Process
- The difference between Quality of Design and Quality of conformance
- Differences and similarities between SQC and SPC
- Total Quality Management (TQM)
- The Three Gurus of TQM
- Lean Six Sigma
- Off-line Control and On-Line Control
- Shewhart Control Charts--Interpreting Shewhart Control Charts
- Process Capability Evaluation
The second course will focus on acceptance sampling and will explore some of the Military and Commercial Standards that have been developed to aid acceptance control.
345-What Every Engineer Should Know about Statistical Process/Quality Control II
5 List: $112.50
Sale: $35.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The focus of this course is to provide an understanding of the principles of Quality Assurance with a focus on Design for Robustness, Quality Loss, Loss Function Computation, and Acceptance control as well as current definitions, terminologies, inherent assumptions that are applicable in industry and as required by the US Government. It also introduces the student to the relevant Military Standards and other Government publications used in the industry. The course also further develops the concepts of system design, parameter design, and tolerance design, as the foundational elements of Robust Product Design. It also goes into a detailed analysis of the use of MIL-STAD-1916 and MIL-HDBK-1916 in establishing attribute-based Acceptance Sampling plans. The course is replete with numerical examples on the computation of the probability of acceptance (Pa) and other important parameters for single, double and multiple sampling plans including; the Average Outgoing Quality (AOQ), the Average Outgoing Quality Limit (AOQL), the Average Total Inspection (ATI), as well as the Average Sampling Number (ASN).
The course is concept based and uses basic arithmetic to develop the fundamental aspects of the techniques. The topics covered include:
Designing for Robustness
System Design, Parameter Design, Tolerance Design, Process Capability (Cp, Cpk) and Process Performance (Pp, Ppk), Process Errors, Quality Loss, and Loss Function
Acceptance Control
Lot Acceptance Sampling Plans (LASP):
Single sampling plans (SSP), Double sampling plans (DSP), Multiple sampling plans (MSP), Sequential Sampling Plans (SSP), Skip Lot Sampling Plans (SLSP), Operating Characteristics Curves (OC Curves), AOQ Curve
MIL- STD-1916 and MIL-HDBK-1916
Requirements and Applicability of MIL-STD-1916 and MIL-SHDBK-1916
Preferred sampling plans
Determination of sampling plan: Verification Level (VL), Code Letter (CL)
Sampling of lots or batches
Disposition of nonconforming product
228-What Every Engineer Should Know About Fire Protection
3 List: $67.50
Sale: $23.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a basic familiarity with the essentials of fire protection, and in particular, focused on sprinkler systems. The National Fire Protection Association Chapter 13 is the most followed guide for the installation of sprinklers. This course covers the essential thoughts and theories for the necessity of fire sprinkler protection, and how the building fuel load strongly influences the amount of required protection. It then discusses how best to meet that need using different components that make up a complete and operational fire protection system.
The course design gives a broad overview of fire protection and touches on many subjects without going to great in-depth levels. It is intended for engineers who need to interact with fire protection professionals, or facility maintenance engineers and management who desire a good working background knowledge of fire protection. It will not teach the complicated calculations and methodologies for designing fire protection systems. Forthcoming courses plan to address that topic in more detail.
181-Introduction to Small-Scale Wind Project Design
4 List: $90.00
Sale: $29.95
Course Objectives: 1. Summarize common terminology of the different types of wind turbines, as well as their relative merits and shortcomings.
2. Use the �Fundamental Equation of Wind Power� for realistic back-of-the-envelope power output projections and identifying practical limitations.
3. Familiarization with the nature (but not the detailed mathematics) of typical wind distribution regimes, such as the Weibull and Raleigh distributions.
4. Cognizance of wind energy project planning issues and show-stoppers, which if initially overlooked, could result in project cancellations.
Course Description:
This course covers the fundamentals of Wind Power technology, providing a practical "quick study" to those who need to (or desire to) become knowledgeable on this topic. Professional Engineers often find that they themselves need to "get real smart, real quick" on wind power, since it is not unusual that they are often the first to be asked by a client or employer to assess if more energy, time, or money should be devoted to investigating the feasibility of a proposed wind project.
By successfully completing this course, you should be comfortable performing fundamental wind energy projections with the sparse and incomplete data often available during preliminary project discussions, as well as become cognizant of pit-falls and show-stoppers that plague initial forays into this field. The goal is to equip the student so he or she will be able to provide a technically-sound reply when asked if a proposed wind power project warrants further evaluation at some additional effort or expense.
Note: This course has been approved for 4 GBCI CE hours for LEED Professionals; GBCI Course ID: 0920018312
032-Stormwater Retention Pond Recovery Analysis
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
To design a stormwater retention pond, one of the analyses that engineers have to perform is the retention and recovery of polluted runoff water. The initial portion of stormwater runoff is typically directed to a retention pond and which contains the most polluted runoff water (the first flush). The polluted water must be fully retained within the retention pond for treatment and infiltration. This course will be limited to recovery analysis for dry retention ponds where the entire polluted water volume must be stored within the pond and then recovered by infiltration within a specified period of time.
The regulatory agencies generally establish the minimum criteria for recovery of the first flush volume, which is sometimes referred to as the pollution abatement volume. For a dry pond the designer must verify the pond's capacity to infiltrate the volume within a specified period of time. This course will present the analytical approach and the methodology to calculate the infiltration losses from a dry retention pond.
039-Stormwater Retention - Field and Laboratory Methods
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to present a systematic methodology for the determination of the type of field and laboratory tests needed and the minimum number of tests to be conducted for the design of a stormwater retention pond system.
Typically, soil borings and hydraulic conductivity tests are conducted for a stormwater retention pond system to evaluate the capacity of the pond to retain and infiltrate stormwater runoff. This is applicable to retention ponds built in sandy unconfined aquifer systems. The number of soil borings and hydraulic conductivity tests performed are usually dependent on many factors, not always obvious to the investigator or a designer. In some areas, the regulatory agencies have established criteria for a minimum number of soil borings and hydraulic conductivity tests. However, judgment and experience are usually applied in the decision making process and the selection of the number of tests can vary significantly from one investigator to another.
This course introduces a systematic methodology for a designer of a stormwater retention pond to select the minimum number of soil borings and hydraulic conductivity tests needed for a particular stormwater retention pond system. The course is presented in two parts. The first part presents the soil borings that are typically used to characterize the subsurface conditions, and the second part presents the hydraulic conductivity test methods and their applicability for a particular subsurface condition. The course concludes with the proposed methods to select the number and type of soil borings and the number and type of hydraulic conductivity tests needed for a particular retention pond system.
209-Green Irrigation Fundamentals - Balancing Aquifer Recharge and Withdrawal
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This "Green Irrigation Fundamentals — Balancing Aquifer Recharge and Withdrawal" is an introduction to an irrigation water demand calculation methodology, which is presented specifically for Florida, USA, but the methodology is applicable to anywhere in the world where similar water management challenges exist and where conservation of water resources is important.
This methodology is presented to allow for a systematic approach to evaluate and determine the optimum irrigation water demand for a particular house, a residential development or commercial development or any other project where impervious surfaces are created and the land use is changed to reduce evapotranspiration water losses.
The approach is relatively simple: if the amount of irrigation water used is equal to the amount of additional water created by the improvements to recharge the aquifer, then the net effect is zero (no impact).
The primary objective of this short course is to introduce a methodology that can be used by individual home owners, developers, engineers, planners, regulators and any other water managers who are interested in the conservation of water and a systematic application of water use restrictions based on scientific principles.
051-Considerations In Estimating Tailwater Elevations
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Determination of a reasonable/accurate tailwater elevation is important in locations such as central, southern, and coastal Florida where the terrain is predominately flat, low-lying, and includes areas of high groundwater. In these areas, a few tenths of a foot difference in water surface elevation on the upstream side of a hydraulic structure (headwater) can be the determining factor in whether a project gets a stormwater permit from the applicable regulatory agency, because of the potential to adversely impact adjacent properties. That same relatively small difference in water surface elevation can also lead to larger pipe sizes for culvert and storm drain systems, larger stormwater ponds, and has a direct impact on the amount of fill needed for projects.
Hydraulic structures in these areas typically flow under "Outlet" control for the design event. The downstream water surface elevation at the discharge point, or tailwater elevation, while a significant component in hydraulic calculations is often given the least amount of attention during design.
This course is of interest to a wide variety of engineers that work on both public and private infrastructure and site development projects. This course discusses those less than ideal, yet typical tailwater conditions encountered during actual practice. It addresses typical agency design requirements as well as some of the more common pitfalls encountered in estimating tailwater elevations. The course discusses the impacts of over and underestimated tailwater elevations and identifies things the designer should consider during the design to avoid the more common pitfalls.
142-Commercial Kitchen Ventilation Design Considerations
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Kitchen ventilation systems require the engineer to look at both the supply and exhaust requirements of the system in order to meet several design criteria. Codes and standards dictate the performance effectiveness of the exhaust of the kitchen as accomplished through a variety of types and styles of hoods. This course provides an insight to some state-of-the-art considerations in commercial kitchen ventilation design.
145-Variable Air Volume (VAV) For Laboratories
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Variable Air Volume (VAV) systems have been used for many years in commercial HVAC systems for a variety of reasons. Energy savings in HVAC systems is where the future of good engineering needs to focus. This course provides considerations for utilizing variable air volume systems in laboratories where safety is of concern both at the hoods and within the room in relationship to adjacent rooms.
146-Fabric Air Distribution
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Air distribution in America has been undergoing a material change over the past few years, literally. Engineers, interior designers, architects, facility owners and contractors have found that the use of fabric material ducts has provided the technical answer to air distribution problems that traditional sheet metal ducts haven't been able to achieve without significant additional cost. The use of fabric air distribution systems can be a paradigm shift that sets stagnant engineering and architectural minds in motion on a building design team. This course provides material for consideration when fabric air distribution systems are used in HVAC systems.
147-Airdoor Fundamentals and Applications
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
An opening in a building wall allows passage of people, material and/or light between two spaces. A door or curtain provides a physical barrier in the opening. Airdoors/air curtains also provide a barrier. This course will review some of the fundamentals of airdoor (air curtain) applications. The course will provide examples of where airdoors can be utilized and give suggestions on design considerations for selecting, sizing and specifying airdoors.
148-Seismic & Wind Information HVAC Engineers Should Know
1 List: $22.50
Sale: $11.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Every building is at risk of being subject to some form of "act of God" by natural forces on the earth. Sometimes these forces are predictable based on expectations developed by past history. This course covers some of the basics of understanding the codes and standards that have put the responsibility of designing buildings to protect against wind and seismic events on the shoulders of professional engineers while at the same time outlining duties and responsibilities of facility owners, code authorities, equipment manufacturers and installing contractors.
014-Introduction to Antennas
4 List: $90.00
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This short course is based on the antenna information in the author's textbook, "Introduction to RF Propagation". It provides a solid treatment of antennas with minimal use of advanced mathematics. Topics include basic antenna types, analysis of gain, beamwidth, polarization and a discussion of antenna radiation regions. The concepts of reflection coefficient, VSWR and axial ratio are explained and both curves and equations are provided for determining matching loss as a function of VSWR and polarization loss as a function of axial ratios.
436-Marine Weight Estimation and Control
1 List: $22.50
Sale: $11.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This Continuing Education course is written
for Professional Engineers and others who are designing, or want to design,
successful floating vessels.
This course is intended to show how important a well-designed and understood weight estimation calculation is to the overall success of a floating structure. Software is provided which establishes a format for the student, that the author has used in the successful design of several hundred ships, boats, barges, submarines, and yachts. There are many examples of ships on video that are examples where proper weight estimation and control was not exercised, resulting in poor trim, heel, bad stability, insufficient freeboard resulting in reduced cargo capacity, underwater swim platforms, and even sinkings during launching. The student’s understanding of the critical nature in establishing a proper foundation for the design of floating structures by paying specific attention to the weight estimate. The following topics are covered:
- Conceptual Design Estimation
- Reference Axes Used In Shipbuilding
- Weight Margins
- Organization of Weight Groups
- Calculation of Moments
- Summation of Weight Groups
- Determination of Resultant Lever Arms
- Basics of Heel and Trim as they relate to the Center of Gravity
- Software Program is Provided
Course Goals: The reader should be able to develop a Marine Weight Estimate of suitable detail and accuracy to provide the basis for the stability calculations necessary for a successful floating vessel.
441-How To Read Shipbuilding Drawings (Part 1)
2 List: $45.00
Sale: $17.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the drawings that are specific to shipbuilding, where to find what information, and how to read them. The following topics are covered:
- General items Common To Other Engineering and Architectural Drawings
- Reference Axes Used In Shipbuilding
- Glossary of Terms Used For Shipbuilding
- Symbols Used In Shipbuilding
- Drawings Produced in the Preliminary Phase of Design (Part 1)
442-How To Read Shipbuilding Drawings (Part 2)
4 List: $90.00
Sale: $29.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the types of drawings that are specific to shipbuilding in the Contract Design stage, where to find what information, and how to read them.
The following topics are covered:
General items Common To Other Engineering and Architectural Drawings
Reference Axes Used In Shipbuilding
Glossary of Terms Used For Shipbuilding (more extensive than Part 1)
Symbols Used In Shipbuilding
First Half of Drawings Produced in the Contract Phase of Design (Part 2):
• Outboard Profile and Arrangement revision
• Inboard Profile and Arrangement revision
• Tank and Ballast Plan revision
• Machinery Arrangement revision
• Interior and Exterior Rendering revisions
• Weight Estimate revision
• Speed/Power/Range/Fuel Consumption Report revision
• Hull Lines Plan revision
• Table of Offsets revision
• Specifications
• Construction Profile
• Typical Bulkheads and Frames
• Hull and Deckhouse Layup Plan (if fiberglass/composite structure)
• Engine Foundations
• Scantling Plan
• Weld Symbol List
• Welding Schedule
• Loadline Drawing
• Propulsion Shaftline and Rudder Details
• Fills, Vents, and Sounds
• Pipe Symbol List
• Bilge System Schematic
• Black Water System Schematic
• Compressed Air System Schematic
• Deck Drains Arrangement
• Oily Bilge Water Schematic
• Exhaust System Schematics
• Fixed Gas Fire Extinguishing System
• HI-FOG and Water Sprinkler Fire Extinguishing System
• Fresh Water System Schematic
• Fuel Service and Transfer System Schematic
• Liquid Cargo Transfer System Schematics
• Gray Water Drains Schematic
• Hydraulic Power System Schematic if centralized
• Hydraulic Power System Schematics for individual systems if not centralized
• Lube Oil and Dirty Oil System Schematic
• Seawater Cooling System Schematic
• Seawater Ballast System Schematic
• Seawater Fire Extinguishing System Schematic
• Steering Arrangement
443-Intact Stability of Surface Ships
4 List: $90.00
Sale: $29.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course covers the following topics:
What is intact ship stability?
Why are submarines not covered in this class?
Glossary of Useful Terms
Ship Stability Theory
Metacentric Height and VCG
Transverse Stability
Longitudinal Stability
Graphical Representation of Transverse Stability
How is intact stability calculated?
Loll Point Transverse Stability
Graphical Representation of Loll Point Transverse Stability
Graphical Representation of Longitudinal Stability
Roll Periods
Ballast
Internal Forces That Affect Stability
• Free Surface Effect
• Passenger Heeling Moments
• Shifting Cargo
External Forces That Affect Stability
• Wind Heel
• Wave Effects-Ordinary Waves and Wakes
• Grounding
• End Launching
• Weights Hanging overboard
• Ice and Water On Deck
• Towing Using Cables
• Currents
Where to find Stability Criteria
Stability Booklet
447-Basic Ship Types & Their Uses (Part 1)
3 List: $67.50
Sale: $23.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
- Bulk Cargo Ships
- Roll On-Roll Off Cargo Ships
- Liquid and Gas Cargo Carriers
- Container Ships
- Break-Bulk Freighters
- Heavy Lift Ships
Passenger Ships
- Roll On-Roll Off Ferries
- Cruise Ships
- Sailing Ships
- Submarines
- Yachts
- Fishing Vessels
449-Basic Ship Types & Their Uses (Part 2)
3 List: $67.50
Sale: $23.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
- Aircraft Carriers
- Amphibious Assault Carriers
- Amphibious Assault Ships
- Battleships
- Cruisers
- Destroyers
- Frigates
- Littoral Combat Ships
- Corvettes
- Patrol Boats
- Landing Craft
450-Basic Ship Types & Their Uses (Part 3)
3 List: $67.50
Sale: $23.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
Auxiliary Ships:
Tankers, Cargo, and Ammunition Ships
Floating Drydocks
Ocean Surveillance Ships
Naval and Army Tugs
Salvage Ships
Submarine Tenders
Submarine Rescue craft
Research Submarines
Coast Guard Vessels:
Buoy Tenders
Icebreakers
National Security Cutters
High Endurance Cutters
Icebreaking Tugs
Medium Endurance Cutters
Sentinel Class Fast Response Cutters
Island Class Cutters
Marine Protector Class Cutter
USCGC Eagle
Small Harbor Tugs
Motor Lifeboats
Aids To Navigation Boats
451-Basic Ship Types & Their Uses (Part 4)
3 List: $67.50
Sale: $23.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are designing, or want to design, successful floating vessels.
Course Description:
This course is intended to show the many types of ships that are operating in the marine business, both as a guide to design and as an aid to identifying the varying types of ships that one may see. The following topics are covered:
Offshore Oil and Gas Platform Support Vessels
Platform Construction Vessels
Anchor Handling and Towing/Supply Vessels
FPSO Ships
Windfarm Construction Vessels
Windfarm Support Vessels
Heavy Lift Ships
Crewboats
Accommodation Vessels
Seagoing Tugs
River and Harbor Tugboats
Articulated Tug-Barges (ATBs)
Pushboats
Dredges
Barges
Fireboats
Scientific Research Ships
Hovercraft
Submarines
460-Hydrostatics, Wetted Surface Area, and Bonjeans Curves
1 List: $22.50
Sale: $11.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are Naval Architects and Marine Engineers, and those who are interested in learning the tools required to determine ship stability.
Course Description:
This course is intended to show the calculation of Hydrostatics, wetted surface area, and the use of Bonjeans Curves, important tools for how ship stability is calculated.
This class covers the following topics:
- Important reference datums or axes
- Useful terms and abbreviations
- How Hydrostatics are calculated
- What information is contained in the Hydrostatics
- How to read a Hydrostatic Table
- How to read the Hydrostatic Curves
- Differences in accuracy between the two sets of Hydrostatics
- Wetted Surface Area calculation
- Bonjeans Curves
461-How Do You Start To Design A Ship?
2 List: $45.00
Sale: $17.95
Course Objectives: This Continuing Education course is written for Professional Engineers and others who are Naval Architects and Marine Engineers, or are interested in learning how Naval Architects and Marine Engineers start to design a ship.
Course Description:
This course is intended to show the steps to designing a successful ship in the Preliminary stage of design.
This course covers:
- The Design Spiral method of design
- The Concurrent Design method
- Particulars
- Coefficients of Form
- Block Coefficient
- Midship Coefficient
- Prismatic Coefficient
- Vertical Prismatic Coefficient
- Waterplane Coefficient
- Volumetric Coefficient
- Selection of Machinery Type
- Powering, Resistance, and Propulsion
- Range and Fuel Capacity
- Weight Estimate
- Hydrostatics and Stability
506-Microcontrollers: An Introduction
4 List: $90.00
Sale: $29.95
New Course
Course Objectives:
Course Description:
Microcontrollers and microprocessors whether seen or unnoticed are an integral part of everyday life. You quite possibly encounter hundreds everyday. Everyday items that you may or may not think of contain one or more of these tiny devices: your electric toothbrush, television, the remote control for your television, children’s toys, cell phones, and the dozen or so processors in your car for the engine electronic control system, GPS, radio system and electronic compass are a few examples.
The purpose of this course is to describe at a high level different microcontroller architectures and to discuss the components of the central processing unit and how the components interact. This course also describes the differences between a microcontroller and a microprocessor and discusses a microcontroller’s instruction set and presents a few examples. This course presents different peripherals, how they are used and how they interact with the central processor.
Learning Objective
At the conclusion of this course the student will learn:
• Three of the main processor architectures
• The difference between the Harvard architecture and von Neumann architecture
• The components of the central processing unit and how they interact
• How binary numbers are manipulated mathematically within the arithmetic logic unit
• The fetch-decode-execute cycle of the central processing unit
• The difference between a microcontroller and a microprocessor
• How a processor’s instruction set translates into machine code
• When to use general purpose input/output
• When to use a timer and real-time clock peripheral
• The differences, advantages and disadvantages of three different communication interfaces: UART, SPI, and I2C
Intended Audience
This course is intended for all engineers.
Course Summary
Microcontrollers are specialized microprocessors. Three of the most popular processor architectures include the Harvard architecture where data memory and program memory are accessed separately, the von Neumann architecture where data memory and program memory are accessed from the same bus, and the modified Harvard architecture which is a combination of the previously mentioned two. The central processing unit (composed of the arithmetic logic unit, registers and the control unit) functions as the brains or core of the processor. The central processing unit processes machine code stored in memory to control all of its functions. The machine code is compiled or assembled from the processor’s instruction set which defines all of the operations of the microcontroller. To complement their functionality, microcontrollers include a suite of peripherals such as input/output pins, timers, a real-time clock and communications controllers.
507-Microcontrollers: Design and Implementation
3 List: $67.50
Sale: $23.95
New Course
Course Objectives:
Course Description:
Microcontrollers are simply microprocessors that include program and data memory and peripherals such as general-purpose input/output ports, timers, serial communications controllers, analog-to-digital converter, etc.
The purpose of this course is to describe a portion of the architecture of a simple microcontroller (namely the Atmel ATtiny2313A microcontroller) and to provide simple examples written in the C programming language that use an LED and a pushbutton. The examples utilize the timer circuit and the port registers and incorporate a timer interrupt and an external interrupt.
Learning Objective
At the conclusion of this course the student will learn:
• the significance of a vector table
• the function of an interrupt controller
• how to use a timer interrupt
• how to use an external interrupt for a pushbutton event
• the difference between a timer overflow and a timer compare match
• how to configure a port pin as either an input or an output
Intended Audience
This course is intended for all engineers.
Course Introduction
In my course entitled "Microcontrollers: an Introduction" I discussed the architecture of microcontrollers. I showed how the central processing unit fetches instructions (or a program) from memory and decomposes the instructions into components that the control unit and the arithmetic logic unit can use to perform the desired operation or function. Here I will discuss how to design a simple circuit incorporating a microcontroller with a small footprint, small pin count, and a small amount of internal memory (both program and data memory). I will give program examples using the C programming language.
Microcontrollers are simply microprocessors that include program and data memory and peripherals such as general-purpose input/output ports, timers, serial communications controllers, analog-to-digital converter, etc.
Course Summary
The Atmel ATtiny2313A microcontroller used for these exercises is packaged in a 20-pin DIP package. It is small compared with other microprocessors available, but there are other smaller devices available. For example the Atmel ATtiny10 is packaged in a 6-pin SOT-23 package, making this device ideal for small projects such as an electronic candle to simulate the flicker of the flame or a child's shoe that has LEDs that light up when he or she walks.
Although the Atmel AVR series of microcontrollers is a great product offering many features with a powerful core, this course is not meant to be an advertisement for the Atmel AVR series of microcontrollers. There are many similar microcontrollers available on the market, such as the Microchip PIC, Texas Instruments MSP430, Intel 8051, STMicroelectronics STM8, Freescale 68HC11, and multiple versions of the ARM core from many vendors.
Microcontrollers today can be designed and programmed to control and monitor almost anything. They have become an integrated part of our society, industry and culture.
508-Moore's Law: Rise of the Machines
2 List: $45.00
Sale: $17.95
New Course
Course Objectives:
Course Description:
Moore's Law is a term used to describe the increase in computing power over time. Moore's Law is the observation that the number of transistors on an integrated circuit (or microprocessor) doubles every two years. This course describes how Moore’s Law has proven true for the past fifty years and discusses how the computing industry will have one of two fates. Either the increase in computing power over time will eventually level off due to physical limitations or further advances in computing power will allow processing power to exponentially increase. Could this exponential increase in processing power eventually lead to a technological singularity?
Learning Objective
At the conclusion of this course the student will learn:
• the definition of Moore's Law
• how Moore's Law has affected the semiconductor industry
• what visionaries say about the future of technology
• the definition of a technological singularity
Intended Audience
This course is intended for all engineers.
Course Introduction
Advances in technology throughout human history have never been as evident as the advances in computer technology in the latter half of the twentieth century and the early part of the twenty-first century. Technological progress is no longer seemingly liner; it is clearly exponential. The trend in the increase in computational power is predicted by Moore's Law.
Moore's Law is a term used to describe the increase in computing power over time. Moore's Law is the observation that the number of transistors on an integrated circuit (or microprocessor) doubles every two years.
A transistor is a tiny semiconductor device used to switch electronic signals. A transistor is a simple digital switch. When used in a digital circuit the transistor is either on or off.
Logic gates build on the switching power of a transistor to make more complex building blocks. A logic gate is the fundamental building block for a digital integrated circuit, and the fundamental building block for a logic gate is the transistor. Logic gates include AND, OR, NOT, NAND, NOR, XOR. All of these logic gates can be built using only NAND gates. This simplifies and reduces the complexity of integrated circuits by only using one basic type of logic gate. NAND gates can be assembled to form flip flops (like the D flip flop); these flip flops are called registers and form the basis of microprocessor cores. The heart of a computer is a microprocessor, and microprocessors are built from logic gates and the basic building block of a logic gate is a transistor.
Course Summary
Moore's Law is a term used to describe the increase in computing power over time. Moore's Law was introduced in 1965 by Gordon Moore. Moore's Law is gauged by the maximum number of transistors on a microprocessor or memory chip at any given point in time. He stated that the number of transistors on an integrated circuit will double approximately every two years. Whether held up by the accuracy of Moore's visionary prediction or driven by industry’s thirst to keep up with the trend in technology, Moore's prediction has proven to be true for almost five decades.
This exponential computing trend has affected all avenues of life including (by not limited to) the following: personal computers, communications, transportation, navigation, agriculture, medical, world finance, education, and social media. Some industry experts believe Moore's Law will reach a fundamental limit within the next few decades, while others expect a revolution in the microprocessor technology to maintain the trend.
Many visionaries feel that we humans will soon reach a point in our existence that can be described as unpredictable and maybe even unsettling. This point in history (if the predictions are true) will be the result of an intelligence explosion caused by a technological singularity. A technological singularity is the point in human history where life or even existence after the event which is based on technological progress is unpredictable or incomprehensible.
These are only predictions though. The fact of the matter is this: we don't know. We don't know enough about consciousness to apply the concept to a machine (yet) if it is even possible...