277-A Review of Site Features
4
List: $90.00
Sale: $9.95
This is our Featured Course of the week.
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a refresher to site-civil engineers and introduces the topic to engineers of other disciplines who are not familiar with site work.
The course identifies some nuances between various site features, and explains these distinctions. The course also identifies and explains some missteps associated with some site features and site feature detailing.
This course will benefit the experienced site development engineer who is looking for some reference or history associated with some site features, as well as those who may be inexperienced with land development. Understanding the basics of site features is important for any civil engineer who is involved in a property development project.
245-A Practical Introduction to Zoning and Entitlements
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is developed to introduce basic concepts of zoning and entitlements for those who are not experienced with land development, as well as a refresher to anyone who has worked in land development and/or has been exposed to zoning and entitlements requirements before. Understanding the basics of zoning and entitlements is important for any civil engineer who will be involved in a property development project.
This course can be used at a high level to help guide the due diligence process associated with confirming the risks associated with the required zoning and entitlements have been reasonably considered and explored. After taking this course, the engineer will be in a better position to guide their clients to more and more frequently successful projects with less and less surprises.
304-Floodplain Engineering - An Overview of Floodplain Management
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers work ion flood-prone areas. It describes many of the resources available to engineers working in these areas including how to access FEMA flood maps. In addition, there is a description of how to calculate hydrostatic, hydrodynamic, and other forces associated with flooding. Finally, some flood control projects are described and illustrated.
The overall objective of this course is to provide an overview of the different types of flooding and floodplains and help engineers to understand these phenomena.
299-Floodplain Engineering - Modeling Flood Profiles Using HEC-RAS - Part 1
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers are involved in flood studies or need to do work within a floodplain. HEC-RAS is the most up-to-date software for calculating flood profiles. It has the capability of determining multiple flood profiles and can deal with complicated stream conditions with multiple bridges and culverts.
The overall objective of this course is to provide an overview of the HEC-RAS program and to review in detail the basic input parameters. Photographs and diagrams are provided to help illustrate the concepts.
440-Floodplain Engineering - An Introduction to Stream Classification & Restoration
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in stream restoration projects. It describes several methodologies for classifying streams and introduces some of the design approaches used in stream restoration.
The overall objective of this course is to provide an introduction to the complex world of stream classification and stream restoration. It also describes the necessary on-going maintenance activities of stream restoration projects.
455-Culvert Design for Fish Passage
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved the design of new or replacement culverts (or other stream structures). It describes in detail the ways that culverts can present obstacles to fish passage and presents an overview of the design methodologies to overcome these problems. It also includes a discussion of fish ladders.
The overall objective of this course is to provide an overview of how fish react to culverts and other stream structures and how the engineer can design these features with fish passage in mind. When you complete this course you should be familiar with many of the methodologies employed in this field.
439-Industrial Pretreatment Standards
5
List: $112.50
Sale: $44.95
Course Objectives: This continuing education course is written specifically for professional engineers to provide a practical understanding of industrial pretreatment standards.
Course Description:
Most industrial and commercial facilities discharge wastewater that is subject to industrial pretreatment standards. This course focuses on requirements for indirect discharges to municipal sewer systems. The roles of national, state, and local pretreatment programs are explained. The course also clarifies how industrial users are categorized and how pollutant limits are established in permits.
The following topics are covered:
- Overview of industrial pretreatment
- Regulations
- National, state, and local pretreatment programs
- Types of industrial users
- Pollutant limits
- Inspection, sampling, and reporting requirements
444-Industrial Pretreatment Design
5
List: $112.50
Sale: $44.95
Course Objectives: This continuing education course is written specifically for professional engineers to provide a practical understanding of the design of industrial pretreatment systems.
Course Description:
It
is common for industrial and commercial facilities to pretreat
wastewater before discharge to a municipal sewer system. This course
provides valuable insights into the design of these wastewater
pretreatment systems. Design criteria and typical design steps are
explained so an engineer can tackle these challenging designs.
Example problems are provided to help with applying the information
in the course.
The
following topics are covered:
Overview
of industrial pretreatment
Design
criteria and steps
Wastewater
assessments
Treatment
alternatives and comparisons
More
than 20 common treatment methods explained
Process
flow diagrams
555-2024 International Building Code (IBC) Occupancy Changes
2
List: $45.00
Sale: $22.50
New Course
Course Objectives: Review the occupancy code changes in the 2024 IBC.
Course Description:
This course provides an overview of the 2024 IBC and Chapter 3 entitled “Occupancy Classification and Use”. The course lists all the known changes in Chapter 3, including the text in both the 2021 and 2024 IBC with changes highlighted in yellow.
Course content:
• IBC Overview
• 2024 IBC Contents
• Chapter 3 Occupancy Classification and Use - Contents
• Chapter 3 Occupancy Classification and Use - Changes
556-2024 IBC Soils and Foundations Changes
2
List: $45.00
Sale: $22.50
New Course
Course Objectives: Review the soils and foundations code changes in the 2024 IBC.
Course Description:
This course provides an overview of the 2024 IBC and Chapter 18 entitled “Soils and Foundations”. The course lists all the known changes in Chapter 18, including the text in both the 2021 and 2024 IBC with changes highlighted in yellow. Figures are provided for context.
Course content:
• IBC Overview
• 2024 IBC Contents
• Chapter 18 Soils and Foundations - Contents
• Chapter 18 Soils and Foundations - Changes
557-2024 IBC Structural Design Changes
3
List: $67.50
Sale: $29.95
New Course
Course Objectives: Review the structural design code changes in the 2024 IBC.
Course Description:
This course provides an overview of the 2024 IBC and Chapter 16 entitled “Structural Design”. The course shows all the significant changes in Chapter 16. The 2021 and 2024 sections are pasted with changes highlighted in yellow. Figures are provided for context.
Course content:
• IBC Overview
• 2024 IBC Contents
• Chapter 16 Structural Design - Contents
• Chapter 16 Structural Design - Changes
558-Ethics Case Study on Flint Water Crisis
1
List: $22.50
Sale: $14.95
New Course
Course Objectives: Learn about the Flint Water Crisis and lessons learned in ethics
Course Description:
The Flint Water Crisis is one of the most well-known and studied drinking water crisis in the United States. This course provides a timeline of events for the crisis and an overview of the engineering issues involved. Reflections are provided for applying the six fundamental canons in the NSPE Code of Ethics.
The following topics are covered:
• NSPE Code of Ethics
• Flint Water Crisis Overview
• Timeline of Events
• Lead in the Tap Water
• Lessons Learned
559-Ethics Case Study on Lake Peigneur Disappearance
1
List: $22.50
Sale: $14.95
New Course
Course Objectives: Learn about the Lake Peigneur Crisis and lessons learned in ethics
Course Description:
The disappearance of Lake Peigneur was a very bizarre event. An oil rig drilled into a large salt mine and caused the entire lake to drain into the mine. This course provides a timeline of events for the crisis and an overview of the engineering issues involved. Reflections are provided for applying the fundamental canons in the NSPE Code of Ethics.
The following topics are covered:
• NSPE Code of Ethics
• Lake Peigneur Disappearance Overview
• Timeline of Events
• Engineering Failures
• Lessons Learned
561-2024 IBC Fire Protection and Life Safety Systems Changes
3
List: $67.50
Sale: $29.95
New Course
Course Objectives: Review the design code changes in the 2024 IBC as related to fire protection and life safety systems.
Course Description:
This course provides an overview of the 2024 IBC and Chapter 9 entitled “Fire Protection and Life Safety Systems”. The course shows all the substantive changes in Chapter 9. The 2021 and 2024 sections are pasted with changes highlighted in yellow. Figures are provided for context.
Course content:
• IBC Overview
• 2024 IBC Contents
• Chapter 9 Fire Protection and Life Safety Systems - Contents
• Chapter 9 Fire Protection and Life Safety Systems - Changes
208-Future Highways - Automated Vehicles
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
It has been approximately 100 years since the motorized vehicle replaced the horse and buggy. The future of highway transportation is now undergoing another major revolution as engineers across numerous disciplines (transportation, automotive, technology, etc.) work towards moving the responsibility of driving the automobile from human to machine, see figure. The development of cars driven completely without aid by a human driver (i.e., driverless cars), commonly referred to as 'automated' vehicles, will certainly give more appropriate meaning to the term 'auto'-mobile.
Example of a future highway (Source: USDOT)
In this course, you will learn about:
- the terminology being used in the field of automated highway vehicles,
- examples of government legislation being implemented to facilitate the future of automated vehicles,
- the technologies being used in automated vehicles,
- automated vehicle engineering research and standards under development, and
- potential impacts of automated vehicles on traffic flow and roadway design.
344-The Highway Capacity Manual - 6th Edition: Overview and What's New
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The 6th Edition of the Highway Capacity Manual (HCM) was released in 2016 and is now the standard for both the Fundamentals of Engineering (FE) exam and Principles and Practice of Engineering (PE) exam. The title of this new HCM is "HCM 6th Edition: A Guide for Multimodal Mobility Analysis". This edition of the HCM provides methods for evaluating multimodal operations of freeways, highways, and arterial streets. The focus of this course is on providing a general overview of the content and organization of the HCM 6th edition and highlighting revisions/updates from the previous edition of the HCM (HCM 2010). The course does not provide detailed coverage of analysis methodology elements. Due to the volume of material covered in the HCM, some general knowledge of the document(s) may be helpful to completing this course, but it is not required.
Highway Capacity Manual 6th Edition Cover
Source: Transportation Research Board
In this course, you will learn about:
- HCM edition history
- Why the HCM title was changed
- Why the need for a new HCM edition
- HCM 6th edition structure — revised
chapter layout design to help practitioners use the manual
- New HCM analysis methodology capabilities
- Future directions/updates to the HCM
149-Precast Segmental Bridge Construction - Part 1 - An Introduction
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to Precast Segmental Bridge Construction covering Casting Segments, Precast Substructure Erection, Precast Superstructure Erection — Span-by-Span Method, and Precast Superstructure Erection — Balanced Cantilever Method.
After completion the reader should have: a basic understanding of these methods of bridge construction and the associated equipment needed, a basic understanding of which construction methods and equipment choices are more suitable for specific bridge applications, and lastly, a basic understanding of how these choices can affect the cost, schedule, quality, and safety of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail each process will be available to provide a more comprehensive understanding of this type of bridge construction.
229-Precast Segmental Bridge Construction - Part 2 - Span by Span Erection Method
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Span-by-Span method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, Truss Placement, Erection Geometry, Span Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the span-by-span method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
230-Precast Segmental Bridge Construction - Part 3 - Stressing and Grouting
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Post-tensioning Stressing and Grouting operations. Topics covered in the course include: Brief introduction narrative, Common Terms and Definitions, Stressing operations outline, and Grouting operations outline.
After completion the reader should have: a better understanding of the post-tensioning stressing and grouting operations and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, testing requirements and procedures, and lastly, the understanding of these operations will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
233-Precast Segmental Bridge Construction - Part 4 - Balanced Cantilever Erection Method
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on the Balanced Cantilever method of erection. Topics covered in the course include: Erection Equipment, Lifting and Transporting Segments, "Table-Top" Fabrication and Erection, Erection Geometry, Balanced Cantilever Erection, and Stressing and Grouting.
After completion the reader should have: a better understanding of the balanced cantilever method of bridge construction and the associated equipment needed, an understanding of the staging and some details of the phases to complete bridge spans, and lastly, the understanding of the method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
264-Precast Segmental Bridge Construction - Part 5 - Precast Segment Manufacturing
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A follow-on course to Precast Segmental Bridge Construction — An Introduction providing more detailed information on manufacturing bridge precast segments. Topics covered in the course include: Casting Equipment, Site Selection, Segment Formwork, Lifting and Transporting Segments, Concrete Placing and Finishing, Casting Geometry, and Stressing and Grouting.
After completion the reader should have a better understanding of the manufacturing and the associated equipment needed to precast bridge segments for erection, and an understanding of the staging and some details for acceptance of precast materials. Lastly, the understanding of the pre-casting method will assist the engineer in cost, schedule, quality, and safety decisions of a project.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient bridge designs to suit a construction method that is advantageous to the project.
Future courses that further detail other segmental bridge processes will be available to provide a more comprehensive understanding of each type of bridge construction.
182-Feedback Control System Fundamentals
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course discusses many fundamental concepts associated with classical feedback control theory. Feedback control measures the state of a physical system or device with a sensing system. The measured state is fed-back and compared to a desired state and the error used by a controller to reduce the difference between the actual and desired states. An example of a feedback control system is the central heating and air conditioning system for a home, or building. A thermostat or temperature sensor is the feedback sensor that measures the room temperature and compares it to the desired temperature or set point, calculating a difference or error. If the temperature is less than the set point, the error is used by the controller to force more heat into the room. When the set point is reached, the error is zero or below an error threshold and the controller will stop heating the room. Another example is the speed control in most of today's automobiles. The speed of the vehicle is measured and compared to a desired speed. Based on the difference between actual speed and the set point, acceleration or braking is applied to the automobile drive to null the error and maintain the desired speed.
Classical control deals directly with the differential equations that describe the dynamics of a plant or process. These equations are transformed into frequency dependent transfer functions. The transfer function is the ratio of two frequency dependent polynomials whose roots describe the response of the plant in a frequency domain. The controller or compensator shapes the closed feedback loop response, given the plant response, to achieve the control performance objectives. Classical feedback control design and analysis tends to require a good foundation in mathematics, however the purpose of this course is not to dwell on the math, although examples are provided, but to provide the basic design and analysis concepts.
The topics covered begin with a description of the basic block diagram in section 2. The relationships between time and frequency domain representations of the block diagram elements are discussed in section 3 followed by the key feedback relationships derived from the block diagram algebra in section 4. Control loop stability and methods to determine stability margins are described in section 5 followed by a discussion of specifying control loop performance in section 6. A couple of control loop design methods are provided in section 7. The basic theory is then applied to two examples; a home heating system in section 8 and motion control applications in section 9. Converting to a digital sample data controller is discussed in section 10; as related to the motion control example in section 9.
291-Proportional, Integral, and Derivative Controller Design Part 1
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
In this course, the design and application of Proportional plus Integral plus Derivative (PID) controller's is discussed. Some familiarity with feedback control may help in providing a better understanding of the course material. PID control is a technique used extensively in feedback control systems. Its origins date back to the 19th century, being used for governor speed control, and since then in numerous applications with a wide variety of actuators and sensors. The controller is simple structure; being the sum of three terms as the name implies. The PID structure provides for a fairly wide range of tuning adjustment in a feedback control loop, especially for relatively simple processes. A PID uses the error, it's integral and derivative to derive a control signal driving the error to a null state. The controller can be structured in many configurations; P-only, PI, PD, PID, plus others to be discussed. PID control is central to most process control systems; but can also be found in numerous applications other than process control ranging from positioning control loops to pointing, tracking and platform stabilization control loops. The PID can also be integrated with higher level control strategies such as model predictive control, adaptive controllers and fuzzy logic control described in Part 2 of the course.
Starting with an introduction in section 1.0, topics covered are a description of the basic feedback control loop block diagram in section 2 and how the PID relates to the control loop. The relationships between time and frequency domain representations of the block diagram elements are discussed in section 3 followed by the key feedback relationships derived from the block diagram algebra in section 4. The PID control algorithm is described in section 5 which includes the frequency domain characterization of the PID (5.1), the effect of each PID term has on response (5.2) and finally different forms of the PID used in actual applications. In section 6 a discussion of specifying control loop performance is presented. PID control loop design methods are provided in section 7. The basic theory is applied to an example; a home heating system, in section 8.
292-Proportional, Integral, and Derivative Controller Design Part 2
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
As discussed in Part 1, PID controllers are used in many control applications; possibly the most common form of feedback control compensation. The versatility of the PID may reside is a fairly simple control structure, easy to implement in software or hardware, offering loop gain adjustment, an integrator to reduce or null servo error, and the phase lead of a derivative improve loop stability or act as a predictive element. This PID structure provides for a fairly wide range of tuning adjustment in a feedback control loop, especially for relatively simple processes. The controller can be configured in many configurations; P-only, PI, PD, PID, plus others are discussed. This part of the course focusses on the digital implementation of the PID controller and its implementation with higher level control strategies; adaptive controllers and fuzzy logic control.
Starting with an introduction in section 1.0, topics covered are a summary of the basic feedback control loop block diagram relationships in section 2. The PID control algorithm, as presented in Part 1, is summarized in section 3 followed by the digital implementation of the PID within the constraints of a sampled control system. The building temperature control example, used in Part 1, is analyzed again in section 4.0 but now using a digital PI controller. Section 5.0 provides another example for a motion control application using a digital PD controller. Finally section 6.0 describes implementation of the PID within a model reference adaptive control (MRAC) architecture and also configured with a fuzzy logic controller (FLC).
405-Structural Nonlinearity - Part 1 - Defining Nonlinearity
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
What is structural nonlinearity? The notion of linearity has become so ingrained in the practice of structural engineering that the term nonlinearity feels shadowy and ominous, vague and unconventional. Nonlinearity means that the structural behavior will be different, but how? What constitutes nonlinearity and what are the different types?
There are multiple components, conditions, and behavior that all fit under the umbrella of structural nonlinearity. The terminology surrounding nonlinearity can be overwhelming – P-delta, inelastic behavior, softening/stiffening, large deflections, physical nonlinearity, follower forces, nonprismatic, directionality, etc.
What are all the different types of nonlinearity that are possible in structural analysis? Why are they different and when do they need to be included? This course aims to introduce the full range of structural nonlinearity, describe their behavior and effects, and provide insight into when nonlinearities should be included in analyses.
Note: The content in this series of courses is advanced and requires a solid understanding of structural behavior and considerable experience with linear structural analyses. The reader should be familiar with beam theory, determinacy and internal stability of structures, strength of materials, and should be experienced in idealizing real-world structures and have exposure to some more advanced concepts such as plastic hinging.
421-Structural Nonlinearity - Part 2 - Analysis Methods
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Only a small sliver of real-world behavior is linear, so mentioning nonlinear analysis without any context is opaque if not ungraspable. The term nonlinear analysis relates as much information as suggesting a “special tool” or a “custom solution”. There are several different analysis methods that can solve structural nonlinearity and they have curious and indistinct names that have been informally adopted by the industry. What types of nonlinearities can MNO or 3rd-order analysis solve? Which of a simulation analysis or an analysis using a geometric stiffness matrix is an approximation? How does a 2nd-order analysis work?
This course surveys the current analysis methods capable of solving structural nonlinearity. This course presents the types of nonlinearity that each method can solve and introduces concepts such as recursion, kinematics, iterative analyses, benchmark problems, and discretization. The discussions are anchored by numerous illustrative diagrams and detailed examples of how iterative analyses converge.
Note: The content in this series of courses is advanced and
requires considerable experience with linear structural analysis and
a solid understanding of structural behavior. It is recommended that
the preceding courses in this series be completed prior to taking
this course.
422-Structural Nonlinearity - Part 3 - Analyzing Nonlinearity
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Nonlinear analyses can be formidable, unpredictable, and tricky to perform proficiently. Performing a nonlinear analysis can be likened to returning to a city you once knew many years ago that has since grown and changed beyond recognition. Landmarks and routes may feel familiar in bouts, and you may be able to tenuously find your way just to hit a dead end or arrive somewhere surprisingly foreign to you. Think of this course as a map kiosk with advice on what to expect and how to navigate nonlinear analyses.
This course describes how nonlinearities can be analyzed once they are identified in a structural system. The course content includes guidance on idealization, nuances of analyzing each nonlinearity type, and general recommendations for analysis.
The course closes with several detailed examples where the reader is walked through the analyses of several types of nonlinearity, each crafted to show analysis protocols, help illustrate confusing aspects, and highlight potential pitfalls.
Note: The content in this series of courses is advanced and
requires considerable experience with linear structural analysis and
a solid understanding of structural behavior. It is recommended that
the preceding courses in this series be completed prior to taking
this course.
481-3D Printing for Engineers
2
List: $45.00
Sale: $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
3D printing is taking the manufacturing world by storm. This course offers engineers a basic introduction to the many facets of 3D printing. Materials, techniques, and integration into engineering processes are explored. Learn about 3D printing history, terminology, and even 10 of the strangest objects ever printed! With lots of eye-catching photos, this introductory course will certainly keep you interested and inform you of the factors involved in 3D printing.
511-Ethics, Competition, Regulation - The Case of the Boeing 737 Max Failures
1
List: $22.50
Sale: $14.95
Course Objectives: - To give engineers an understanding of their responsibilities, across different codes of engineering ethics, in situations where the health, safety, and welfare of the public is affected by engineering decisions.
- To give engineers an understanding of how recent code of ethics changes have made the engineers’ responsibility for the health, safety, and welfare of the public more explicit.
Course Description:
After Lion Air flight 610 crashed into the Java Sea thirteen minutes after takeoff from Jakarta, Indonesia, on October 29, 2018, Boeing cited pilot error as a likely cause of the tragedy that killed all one 189 people on board its 737 Max aircraft. Post-flight analysis, however, showed an unusual trajectory for the crash. Shortly after takeoff, a series of twenty nosedives started to drive the plane downward, with the pilots recovering each time only to experience another rapid dive as the plane got lower and lower in the sky and crashed. On the recovered flight recorder, pilots could be heard furiously leafing through the technical manual of the airplane as it crashed into the sea. When another 737 Max, Ethiopia Airlines flight 302, crashed with a similar trajectory after taking off from Addis Ababa on March 10, 2018, killing all 149 people on board, the search for a cause beyond pilot error began in earnest. In both cases, an automatic system operating unbeknownst to the flight crews that they had no way of interacting with or turning off had taken control of the airplanes and driven them down, despite pilots’ efforts to save the planes and, indeed, even determine what was happening. How could an autonomous system that pilots could not interact with during flight, nor turn off, come to be installed in widely used aircraft unbeknownst to pilots flying those aircraft—and why did that system fail? What roles did engineers play in the design and certification process? What consequences did engineers, and Boeing as a company, face after the crashes? What do different codes of ethics say about engineering decisions that affect the health, safety, and welfare of the public in such circumstances? Did the engineers involved act appropriately according to the different ethical codes?
472-What Every Engineer Should Know About Hardness Testing
2
List: $45.00
Sale: $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course explains the various types of material hardness testing an engineer may encounter. The methods covered include Rockwell, Brinell, Mohs, Vickers, Knoop, and Shore. Upon completion of this course, you will be able to identify and explain each of the aforementioned tests and understand why each method is utilized in industry.